Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Graph Data Processing with Cypher

You're reading from   Graph Data Processing with Cypher A practical guide to building graph traversal queries using the Cypher syntax on Neo4j

Arrow left icon
Product type Paperback
Published in Dec 2022
Publisher Packt
ISBN-13 9781804611074
Length 332 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ravindranatha Anthapu Ravindranatha Anthapu
Author Profile Icon Ravindranatha Anthapu
Ravindranatha Anthapu
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Part 1: Cypher Introduction
2. Chapter 1: Introduction to Neo4j and Cypher FREE CHAPTER 3. Chapter 2: Components of Cypher 4. Part 2: Working with Cypher
5. Chapter 3: Loading Data with Cypher 6. Chapter 4: Querying Graph 7. Chapter 5: Filtering, Sorting, and Aggregations 8. Chapter 6: List Expressions, UNION, and Subqueries 9. Part 3: Advanced Cypher Concepts
10. Chapter 7: Working with Lists and Maps 11. Chapter 8: Advanced Query Patterns 12. Chapter 9: Query Tuning 13. Chapter 10: Using APOC Utilities 14. Chapter 11: Cypher Ecosystem 15. Chapter 12: Tips and Tricks 16. Index 17. Other Books You May Enjoy

Using Kafka and Spark connectors

Neo4j has official support for Kafka and Spark connectors that can read and write data to graphs. The Kafka connector makes it easy to ingest data into Neo4j at scale, without needing to build custom client code. Spark connector simplifies the reading and writing of data to graphs using dataframes. Let’s take a look at the core features provided by these connectors:

  • Kafka connector:
    • Provides the capability to ingest data into Neo4j using templatized Cypher queries
    • Can handle streaming data efficiently
    • Runs as a plugin on existing Kafka installations
    • You can read more about this connector at https://neo4j.com/labs/kafka/4.1/kafka-connect/
  • Spark connector:
    • Makes it easier to read nodes and relationships into a dataframe
    • Makes it possible to take the data from dataframes and write it into Neo4j easily
    • Supports using Python or R as the language of choice in Spark
    • Makes it easier to leverage all the capabilities of Spark to massage the data before...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime