Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Getting Started with Streamlit for Data Science

You're reading from   Getting Started with Streamlit for Data Science Create and deploy Streamlit web applications from scratch in Python

Arrow left icon
Product type Paperback
Published in Aug 2021
Publisher Packt
ISBN-13 9781800565500
Length 282 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Tyler Richards Tyler Richards
Author Profile Icon Tyler Richards
Tyler Richards
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1: Creating Basic Streamlit Applications
2. Chapter 1: An Introduction to Streamlit FREE CHAPTER 3. Chapter 2: Uploading, Downloading, and Manipulating Data 4. Chapter 3: Data Visualization 5. Chapter 4: Using Machine Learning with Streamlit 6. Chapter 5: Deploying Streamlit with Streamlit Sharing 7. Section 2: Advanced Streamlit Applications
8. Chapter 6: Beautifying Streamlit Apps 9. Chapter 7: Exploring Streamlit Components 10. Chapter 8: Deploying Streamlit Apps with Heroku and AWS 11. Section 3: Streamlit Use Cases
12. Chapter 9: Improving Job Applications with Streamlit 13. Chapter 10: The Data Project – Prototyping Projects in Streamlit 14. Chapter 11: Using Streamlit for Teams 15. Chapter 12: Streamlit Power Users 16. Other Books You May Enjoy

Summary

This chapter was full of fundamental building blocks that we will use vigorously throughout the remainder of this book, and that you will use to develop your own Streamlit applications.

On data, we covered how to bring our own DataFrames into Streamlit and how to accept user input in the form of a data file that brings us past only being able to simulate data. On other skillsets, we learned how to use our cache to make our data apps faster, how to control the flow of our Streamlit apps, and how to debug our Streamlit apps using st.write(). That's it for this chapter. Next, we'll move on to data visualization!

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image