Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Extreme C

You're reading from   Extreme C Taking you to the limit in Concurrency, OOP, and the most advanced capabilities of C

Arrow left icon
Product type Paperback
Published in Oct 2019
Publisher Packt
ISBN-13 9781789343625
Length 822 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Kamran Amini Kamran Amini
Author Profile Icon Kamran Amini
Kamran Amini
Arrow right icon
View More author details
Toc

Table of Contents (27) Chapters Close

Preface 1. Essential Features FREE CHAPTER 2. From Source to Binary 3. Object Files 4. Process Memory Structure 5. Stack and Heap 6. OOP and Encapsulation 7. Composition and Aggregation 8. Inheritance and Polymorphism 9. Abstraction and OOP in C++ 10. Unix – History and Architecture 11. System Calls and Kernels 12. The Most Recent C 13. Concurrency 14. Synchronization 15. Thread Execution 16. Thread Synchronization 17. Process Execution 18. Process Synchronization 19. Single-Host IPC and Sockets 20. Socket Programming 21. Integration with Other Languages 22. Unit Testing and Debugging 23. Build Systems 24. Other Books You May Enjoy
25. Leave a review - let other readers know what you think
26. Index

Task scheduler unit

As we've said before, all multitasking operating systems are required to have a task scheduler unit, or simply a scheduler unit, in their kernel. In this section, we're going to see how this unit works and how it contributes to the seamless execution of some concurrent tasks.

Some facts regarding the task scheduler unit are listed as follows:

  • The scheduler has a queue for tasks waiting to be executed. Tasks or jobs are simply the pieces of work that should be performed in separate flows of execution.
  • This queue is usually prioritized, with the high-priority tasks being chosen to start first.
  • The processor unit is managed and shared among all the tasks by the task scheduler. When the processor unit is free (no task is using it), the task scheduler must select another task from its queue before letting it use the processor unit. When the task is finished, it releases the processor unit and make it available again, then the task scheduler...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image