NumPY
We should know that there is a hierarchy of types for representing data in Python. At the root are immutable objects such as integers, floats, and Boolean. Built on this, we have sequence types. These are ordered sets of objects indexed by non-negative integers. They are iterative objects that include strings, lists, and tuples. Sequence types have a common set of operations such as returning an element (s[i]) or a slice (s[i:j]), and finding the length (len(s)) or the sum (sum(s)). Finally, we have mapping types. These are collections of objects indexed by another collection of key objects. Mapping objects are unordered and are indexed by numbers, strings, or other objects. The built-in Python mapping type is the dictionary.
NumPy builds on these data objects by providing two further objects: an N-dimensional array object (ndarray
) and a universal function object (ufunc
). The ufunc
object provides element-by-element operations on ndarray
objects, allowing typecasting and array broadcasting...