Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Deep Learning Essentials

You're reading from   Deep Learning Essentials Your hands-on guide to the fundamentals of deep learning and neural network modeling

Arrow left icon
Product type Paperback
Published in Jan 2018
Publisher Packt
ISBN-13 9781785880360
Length 284 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Wei Di Wei Di
Author Profile Icon Wei Di
Wei Di
Anurag Bhardwaj Anurag Bhardwaj
Author Profile Icon Anurag Bhardwaj
Anurag Bhardwaj
Jianing Wei Jianing Wei
Author Profile Icon Jianing Wei
Jianing Wei
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Why Deep Learning? 2. Getting Yourself Ready for Deep Learning FREE CHAPTER 3. Getting Started with Neural Networks 4. Deep Learning in Computer Vision 5. NLP - Vector Representation 6. Advanced Natural Language Processing 7. Multimodality 8. Deep Reinforcement Learning 9. Deep Learning Hacks 10. Deep Learning Trends 11. Other Books You May Enjoy

Multilayer perceptrons

The multilayer perceptron is one of the simplest networks. Essentially, it is defined as having one input layer, one output layer, and a few hidden layers (more than one). Each layer has multiple neurons and the adjacent layers are fully connected. Each neuron can be thought of as a cell in these huge networks. It determines the flow and transformation of the incoming signals. Signals from the previous layers are pushed forward to the neuron of the next layer through the connected weights. For each artificial neuron, it calculates a weighted sum of all incoming inputs by multiplying the signal with the weights and adding a bias. The weighted sum will then go through a function called an activation function to decide whether it should be fired or not, which results in output signals for the next level.

For example, a fully-connected, feed-forward neural network...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image