In previous chapters, we covered the basics of deep learning as applied to the fields of computer vision and natural language processing (NLP). Most of these techniques can be broadly classified as supervised learning techniques, where the goal is to learn patterns from training data and apply them to unseen test instances. This pattern learning is often represented as a model learnt over large volumes of training data. Obtaining such large volumes of labeled data is often a challenge. This necessitates a new approach to learning patterns from data with or without labels. To ensure correct training, minimal supervision may be provided in the form of a reward if the model correctly learns a pattern, or a penalty otherwise. Reinforcement learning provides a statistical framework to achieve this task in a principled manner. In this chapter, we will cover...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand