Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Cloud Scale Analytics with Azure Data Services

You're reading from   Cloud Scale Analytics with Azure Data Services Build modern data warehouses on Microsoft Azure

Arrow left icon
Product type Paperback
Published in Jul 2021
Publisher Packt
ISBN-13 9781800562936
Length 520 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Patrik Borosch Patrik Borosch
Author Profile Icon Patrik Borosch
Patrik Borosch
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Section 1: Data Warehousing and Considerations Regarding Cloud Computing
2. Chapter 1: Balancing the Benefits of Data Lakes Over Data Warehouses FREE CHAPTER 3. Chapter 2: Connecting Requirements and Technology 4. Section 2: The Storage Layer
5. Chapter 3: Understanding the Data Lake Storage Layer 6. Chapter 4: Understanding Synapse SQL Pools and SQL Options 7. Section 3: Cloud-Scale Data Integration and Data Transformation
8. Chapter 5: Integrating Data into Your Modern Data Warehouse 9. Chapter 6: Using Synapse Spark Pools 10. Chapter 7: Using Databricks Spark Clusters 11. Chapter 8: Streaming Data into Your MDWH 12. Chapter 9: Integrating Azure Cognitive Services and Machine Learning 13. Chapter 10: Loading the Presentation Layer 14. Section 4: Data Presentation, Dashboarding, and Distribution
15. Chapter 11: Developing and Maintaining the Presentation Layer 16. Chapter 12: Distributing Data 17. Chapter 13: Introducing Industry Data Models 18. Chapter 14: Establishing Data Governance 19. Other Books You May Enjoy

Understanding ASA SQL

The main processing in your ASA job will be done using SQL to implement the analytical rules you want to apply to your incoming data.

Compared to data warehouse batch-oriented processing, stream processing observes a constantly delivered chain of events. The processing, therefore, will need different approaches as you will, for example, aggregate values over a certain recurring time frame. This is called windowing. The ASA SQL dialect implements a collection of windowing functions that will support you in doing this.

But before we dive into the magic of windowing functions and ASA, let's first finish our basic ASA job and kick it:

  1. Please select Query from either the navigation blade or the Overview blade and select Edit query:

    Figure 8.4 – ASA query editor

  2. In the editor, please enter your ASA query. Please replace the displayed query with the following:
    SELECT
       * 
    INTO
        airdelaystreamingtarget...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime