Hyperparameter optimization
Due to its ubiquity and ease of framing, hyperparameter optimization is sometimes regarded as being synonymous with automated ML. Depending on the search space, if you include features, hyperparameter optimization, also dubbed hyperparameter tuning and hyperparameter learning, is known as automated pipeline learning. All these terms can be bit daunting for something as simple as finding the right parameters for a model, but graduating students must publish, and I digress.
There are a couple of key points regarding hyperparameters that are important to note as we look further into these constructs. It is well established that the default parameters are not optimized. Olson et al., in their NIH paper, demonstrated how the default parameters are almost always a bad idea. Olson mentions that "Tuning often improves an algorithm's accuracy by 3–5%, depending on the algorithm…. In some cases, parameter tuning led to CV accuracy improvements...