Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Artificial Intelligence with Python

You're reading from   Artificial Intelligence with Python A Comprehensive Guide to Building Intelligent Apps for Python Beginners and Developers

Arrow left icon
Product type Paperback
Published in Jan 2017
Publisher Packt
ISBN-13 9781786464392
Length 446 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Prateek Joshi Prateek Joshi
Author Profile Icon Prateek Joshi
Prateek Joshi
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Introduction to Artificial Intelligence FREE CHAPTER 2. Classification and Regression Using Supervised Learning 3. Predictive Analytics with Ensemble Learning 4. Detecting Patterns with Unsupervised Learning 5. Building Recommender Systems 6. Logic Programming 7. Heuristic Search Techniques 8. Genetic Algorithms 9. Building Games With Artificial Intelligence 10. Natural Language Processing 11. Probabilistic Reasoning for Sequential Data 12. Building A Speech Recognizer 13. Object Detection and Tracking 14. Artificial Neural Networks 15. Reinforcement Learning 16. Deep Learning with Convolutional Neural Networks

What are Decision Trees?


A Decision Tree is a structure that allows us to split the dataset into branches and then make simple decisions at each level. This will allow us to arrive at the final decision by walking down the tree. Decision Trees are produced by training algorithms, which identify how we can split the data in the best possible way.

Any decision process starts at the root node at the top of the tree. Each node in the tree is basically a decision rule. Algorithms construct these rules based on the relationship between the input data and the target labels in the training data. The values in the input data are utilized to estimate the value for the output.

Now that we understand basic concept of Decision Trees, the next thing is to understand how the trees are automatically constructed. We need algorithms that can construct the optimal tree based on our data. In order to understand it, we need to understand the concept of entropy. In this context, entropy refers to information entropy...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime