Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Artificial Intelligence with Python

You're reading from   Artificial Intelligence with Python A Comprehensive Guide to Building Intelligent Apps for Python Beginners and Developers

Arrow left icon
Product type Paperback
Published in Jan 2017
Publisher Packt
ISBN-13 9781786464392
Length 446 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Prateek Joshi Prateek Joshi
Author Profile Icon Prateek Joshi
Prateek Joshi
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Introduction to Artificial Intelligence FREE CHAPTER 2. Classification and Regression Using Supervised Learning 3. Predictive Analytics with Ensemble Learning 4. Detecting Patterns with Unsupervised Learning 5. Building Recommender Systems 6. Logic Programming 7. Heuristic Search Techniques 8. Genetic Algorithms 9. Building Games With Artificial Intelligence 10. Natural Language Processing 11. Probabilistic Reasoning for Sequential Data 12. Building A Speech Recognizer 13. Object Detection and Tracking 14. Artificial Neural Networks 15. Reinforcement Learning 16. Deep Learning with Convolutional Neural Networks

Generating data using Hidden Markov Models

A Hidden Markov Model (HMM) is a powerful analysis technique for analyzing sequential data. It assumes that the system being modeled is a Markov process with hidden states. This means that the underlying system can be one among a set of possible states. It goes through a sequence of state transitions, thereby producing a sequence of outputs. We can only observe the outputs but not the states. Hence these states are hidden from us. Our goal is to model the data so that we can infer the state transitions of unknown data.

In order to understand HMMs, let's consider the example of a salesman who has to travel between the following three cities for his job -- London, Barcelona, and New York. His goal is to minimize the traveling time so that he can be more efficient. Considering his work commitments and schedule, we have a set of probabilities that dictate the chances of going from city X to city Y. In the information given below, P(X -> Y...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime