Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Transformers for Natural Language Processing and Computer Vision

You're reading from   Transformers for Natural Language Processing and Computer Vision Explore Generative AI and Large Language Models with Hugging Face, ChatGPT, GPT-4V, and DALL-E 3

Arrow left icon
Product type Paperback
Published in Feb 2024
Publisher Packt
ISBN-13 9781805128724
Length 730 pages
Edition 3rd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Denis Rothman Denis Rothman
Author Profile Icon Denis Rothman
Denis Rothman
Arrow right icon
View More author details
Toc

Table of Contents (24) Chapters Close

Preface 1. What Are Transformers? 2. Getting Started with the Architecture of the Transformer Model FREE CHAPTER 3. Emergent vs Downstream Tasks: The Unseen Depths of Transformers 4. Advancements in Translations with Google Trax, Google Translate, and Gemini 5. Diving into Fine-Tuning through BERT 6. Pretraining a Transformer from Scratch through RoBERTa 7. The Generative AI Revolution with ChatGPT 8. Fine-Tuning OpenAI GPT Models 9. Shattering the Black Box with Interpretable Tools 10. Investigating the Role of Tokenizers in Shaping Transformer Models 11. Leveraging LLM Embeddings as an Alternative to Fine-Tuning 12. Toward Syntax-Free Semantic Role Labeling with ChatGPT and GPT-4 13. Summarization with T5 and ChatGPT 14. Exploring Cutting-Edge LLMs with Vertex AI and PaLM 2 15. Guarding the Giants: Mitigating Risks in Large Language Models 16. Beyond Text: Vision Transformers in the Dawn of Revolutionary AI 17. Transcending the Image-Text Boundary with Stable Diffusion 18. Hugging Face AutoTrain: Training Vision Models without Coding 19. On the Road to Functional AGI with HuggingGPT and its Peers 20. Beyond Human-Designed Prompts with Generative Ideation 21. Index
Appendix A: Revolutionizing AI: The Power of Optimized Time Complexity in Transformer Models 1. Appendix B: Answers to the Questions

Summary

In this chapter, we first started by examining the mind-blowing long-distance dependencies that transformer architectures can uncover. Transformers can perform transductions from written and oral sequences to meaningful representations as never before in the history of Natural Language Understanding (NLU).

These two dimensions, the expansion of transduction and the simplification of implementation, are taking artificial intelligence to a level never seen before.

We explored the bold approach of removing RNNs, LSTMs, and CNNs from transduction problems and sequence modeling to build the Transformer architecture. The symmetrical design of the standardized dimensions of the encoder and decoder makes the flow from one sublayer to another nearly seamless.

We saw that beyond removing recurrent network models, transformers introduce parallelized layers that reduce training time. In addition, we discovered other innovations, such as positional encoding and masked multi-headed attention.

The flexible, Original Transformer architecture provides the basis for many other innovative variations that open the way for yet more powerful transduction problems and language modeling.

We will go more in depth into some aspects of the Transformer’s architecture in the following chapters when describing the many variants of the original model.

The arrival of the Transformer marks the beginning of a new generation of ready-to-use artificial intelligence models. For example, Hugging Face and Google Brain make artificial intelligence easy to implement with a few lines of code.

Before continuing to the next chapter, make sure you capture the details of the paradigm shift constituted by the architecture of the Original Transformer. You will then be able to face any present and future transformer model.

In this chapter, we have dived into the architecture of the Original Transformer. Now, we will see what they can do. In Chapter 3, Emergent vs. Downstream Tasks: The Unseen Depths of Transformers, we will explore the wide range of tasks transformer models can perform.

You have been reading a chapter from
Transformers for Natural Language Processing and Computer Vision - Third Edition
Published in: Feb 2024
Publisher: Packt
ISBN-13: 9781805128724
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image