Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Machine Learning Workshop

You're reading from   The Machine Learning Workshop Get ready to develop your own high-performance machine learning algorithms with scikit-learn

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781839219061
Length 286 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Hyatt Saleh Hyatt Saleh
Author Profile Icon Hyatt Saleh
Hyatt Saleh
Arrow right icon
View More author details
Toc

2. Unsupervised Learning – Real-Life Applications

Overview

This chapter explains the concept of clustering in machine learning. It explains three of the most common clustering algorithms, with a hands-on approximation to solve a real-life data problem. By the end of this chapter, you should have a firm understanding of how to create clusters out of a dataset using the k-means, mean-shift, and DBSCAN algorithms, as well as the ability to measure the accuracy of those clusters.

You have been reading a chapter from
The Machine Learning Workshop - Second Edition
Published in: Jul 2020
Publisher: Packt
ISBN-13: 9781839219061
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime