Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Art of Data-Driven Business

You're reading from   The Art of Data-Driven Business Transform your organization into a data-driven one with the power of Python machine learning

Arrow left icon
Product type Paperback
Published in Dec 2022
Publisher Packt
ISBN-13 9781804611036
Length 314 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Alan Bernardo Palacio Alan Bernardo Palacio
Author Profile Icon Alan Bernardo Palacio
Alan Bernardo Palacio
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part 1: Data Analytics and Forecasting with Python
2. Chapter 1: Analyzing and Visualizing Data with Python FREE CHAPTER 3. Chapter 2: Using Machine Learning in Business Operations 4. Part 2: Market and Customer Insights
5. Chapter 3: Finding Business Opportunities with Market Insights 6. Chapter 4: Understanding Customer Preferences with Conjoint Analysis 7. Chapter 5: Selecting the Optimal Price with Price Demand Elasticity 8. Chapter 6: Product Recommendation 9. Part 3: Operation and Pricing Optimization
10. Chapter 7: Predicting Customer Churn 11. Chapter 8: Grouping Users with Customer Segmentation 12. Chapter 9: Using Historical Markdown Data to Predict Sales 13. Chapter 10: Web Analytics Optimization 14. Chapter 11: Creating a Data-Driven Culture in Business 15. Index 16. Other Books You May Enjoy

Using data science and advanced analytics in business

Most of the, time the question of what differentiates a data scientist from a business analyst arises, as both roles focus on attaining insight from data. From a certain perspective, it can be considered that data science involves creating forecasts by analyzing the patterns behind the raw data. Business intelligence is backward-looking and discovers the previous and current trends, while data science is forward-looking and forecasts future trends.

Business decision-making strongly relies on data science and advanced analytics because they help managers understand how decisions affect outcomes. As a result, data scientists are increasingly required to integrate common machine learning technologies with knowledge of the underlying causal linkages. These developments have given rise to positions like that of the decision scientist, a technologist who focuses on using technology to support business and decision-making. When compared to a different employment description known as a “data scientist” or “big data scientist,” however, the phrase “decision scientist” becomes truly meaningful.

Most times, there might be confusion between the roles of business analysts, data scientists, and data analysts. Business analysts are more likely to address business problems and suggest solutions, whereas data analysts typically work more directly with the data itself. Both positions are in high demand and are often well paid, but data science is far more engaged in forecasting since it examines the patterns hidden in the raw data.

You have been reading a chapter from
The Art of Data-Driven Business
Published in: Dec 2022
Publisher: Packt
ISBN-13: 9781804611036
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime