Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Scala and Spark for Big Data Analytics

You're reading from   Scala and Spark for Big Data Analytics Explore the concepts of functional programming, data streaming, and machine learning

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781785280849
Length 796 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (2):
Arrow left icon
Sridhar Alla Sridhar Alla
Author Profile Icon Sridhar Alla
Sridhar Alla
Md. Rezaul Karim Md. Rezaul Karim
Author Profile Icon Md. Rezaul Karim
Md. Rezaul Karim
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Introduction to Scala 2. Object-Oriented Scala FREE CHAPTER 3. Functional Programming Concepts 4. Collection APIs 5. Tackle Big Data – Spark Comes to the Party 6. Start Working with Spark – REPL and RDDs 7. Special RDD Operations 8. Introduce a Little Structure - Spark SQL 9. Stream Me Up, Scotty - Spark Streaming 10. Everything is Connected - GraphX 11. Learning Machine Learning - Spark MLlib and Spark ML 12. My Name is Bayes, Naive Bayes 13. Time to Put Some Order - Cluster Your Data with Spark MLlib 14. Text Analytics Using Spark ML 15. Spark Tuning 16. Time to Go to ClusterLand - Deploying Spark on a Cluster 17. Testing and Debugging Spark 18. PySpark and SparkR

Introduction to Scala

"I'm Scala. I'm a scalable, functional and object-oriented programming language. I can grow with you and you can play with me by typing one-line expressions and observing the results instantly"

- Scala Quote

In last few years, Scala has observed steady rise and wide adoption by developers and practitioners, especially in the fields of data science and analytics. On the other hand, Apache Spark which is written in Scala is a fast and general engine for large-scale data processing. Spark's success is due to many factors: easy-to-use API, clean programming model, performance, and so on. Therefore, naturally, Spark has more support for Scala: more APIs are available for Scala compared to Python or Java; although, new Scala APIs are available before those for Java, Python, and R.

Now that before we start writing your data analytics program using Spark and Scala (part II), we will first get familiar with Scala's functional programming concepts, object oriented features and the Scala collection APIs in detail (part I). As a starting point, we will provide a brief introduction to Scala in this chapter. We will cover some basic aspects of Scala including it's history and purposes. Then we will see how to install Scala on different platforms including Windows, Linux, and Mac OS so that your data analytics programs can be written on your favourite editors and IDEs. Later in this chapter, we will provide a comparative analysis between Java and Scala. Finally, we will dive into Scala programming with some examples.

In a nutshell, the following topics will be covered:

  • History and purposes of Scala
  • Platforms and editors
  • Installing and setting up Scala
  • Scala: the scalable language
  • Scala for Java programmers
  • Scala for the beginners
  • Summary
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image