Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
R Statistics Cookbook

You're reading from   R Statistics Cookbook Over 100 recipes for performing complex statistical operations with R 3.5

Arrow left icon
Product type Paperback
Published in Mar 2019
Publisher Packt
ISBN-13 9781789802566
Length 448 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Francisco Juretig Francisco Juretig
Author Profile Icon Francisco Juretig
Francisco Juretig
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Getting Started with R and Statistics FREE CHAPTER 2. Univariate and Multivariate Tests for Equality of Means 3. Linear Regression 4. Bayesian Regression 5. Nonparametric Methods 6. Robust Methods 7. Time Series Analysis 8. Mixed Effects Models 9. Predictive Models Using the Caret Package 10. Bayesian Networks and Hidden Markov Models 11. Other Books You May Enjoy

Vector autoregressions (VARs)

Instead of working with just one time series, we could work with multiple series, exploiting the interrelationships between them. The true multivariate extension of ARIMA models are VARMA models, but they are rarely used in practice because they are very hard to fit. VAR models still offer us the possibility of modelling multiple time series, requiring rather loose assumptions, and a much simpler computational framework. This is an extension of the autoregressive (AR) models, where we model a time series in terms of its past.

These models arise when modeling related time series, where the past of a variable explains not only part of its own present, but also those of the rest of the variables. We will need essentially the same assumption that we required in terms of stationarity for ARIMA. Here, we will extend that to the multivariate case, and...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image