Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
R Deep Learning Projects

You're reading from   R Deep Learning Projects Master the techniques to design and develop neural network models in R

Arrow left icon
Product type Paperback
Published in Feb 2018
Publisher Packt
ISBN-13 9781788478403
Length 258 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Yuxi (Hayden) Liu Yuxi (Hayden) Liu
Author Profile Icon Yuxi (Hayden) Liu
Yuxi (Hayden) Liu
Pablo Maldonado Pablo Maldonado
Author Profile Icon Pablo Maldonado
Pablo Maldonado
Arrow right icon
View More author details
Toc

RNNs from scratch in R

The purpose of this section is to show you how you can implement recurrent neural networks from bare bones in R. This is perhaps not the optimal solution for a number of reasons, but it is a great way to get started in deep learning. 

There are many plug and play frameworks like H2O, MXNet, TensorFlow, or Keras, that have compatibility with R. Our goal is to focus on the understanding of the algorithm rather than a particular API, although we will include an example using Keras. This is for two reasons, at the time of writing, the compatibility with R suffers from growing pains and we encountered many errors and issues with the different packages. On the other hand, even the stable versions of such packages have ever-changing APIs. We will focus on this section in building a very simple recurrent neural network from scratch, using simple tools from...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime