Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Machine Learning with R

You're reading from   Practical Machine Learning with R Define, build, and evaluate machine learning models for real-world applications

Arrow left icon
Product type Paperback
Published in Aug 2019
Publisher Packt
ISBN-13 9781838550134
Length 416 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Brindha Priyadarshini Jeyaraman Brindha Priyadarshini Jeyaraman
Author Profile Icon Brindha Priyadarshini Jeyaraman
Brindha Priyadarshini Jeyaraman
Ludvig Renbo Olsen Ludvig Renbo Olsen
Author Profile Icon Ludvig Renbo Olsen
Ludvig Renbo Olsen
Monicah Wambugu Monicah Wambugu
Author Profile Icon Monicah Wambugu
Monicah Wambugu
Arrow right icon
View More author details
Toc

Table of Contents (8) Chapters Close

About the Book 1. An Introduction to Machine Learning FREE CHAPTER 2. Data Cleaning and Pre-processing 3. Feature Engineering 4. Introduction to neuralnet and Evaluation Methods 5. Linear and Logistic Regression Models 6. Unsupervised Learning 1. Appendix

Chapter 2: Data Cleaning and Pre-processing

Activity 6: Pre-processing using Center and Scale

Solution:

In this exercise, we will perform the center and scale pre-processing operations.

  1. Load the mlbench library and the PimaIndiansDiabetes dataset:

    # Load Library caret

    library(caret)

    library(mlbench)

    # load the dataset PimaIndiansDiabetes

    data(PimaIndiansDiabetes)

    View the summary:

    # view the data

    summary(PimaIndiansDiabetes [,1:2])

    The output is as follows:

        pregnant         glucose     

    Min.   : 0.000   Min.   :  0.0  

    1st Qu.: 1.000   1st Qu.: 99.0  

    Median : 3.000   Median :117.0  

    Mean   : 3.845   Mean   :120.9  

    3rd Qu.: 6.000   3rd Qu.:140.2  

    Max.   :17.000   Max.   :199.0

  2. User preProcess() to pre-process the data to center and scale:

    # to standardise we will scale and center

    params <- preProcess(PimaIndiansDiabetes [,1:2], method=c("center", "scale"))

  3. Transform the dataset using predict():

    # transform the dataset

    new_dataset <- predict(params, PimaIndiansDiabetes [,1:2])

  4. Print the summary of the new dataset:

    # summarize the transformed dataset

    summary(new_dataset)

    The output is as follows:

        pregnant          glucose       

    Min.   :-1.1411   Min.   :-3.7812  

    1st Qu.:-0.8443   1st Qu.:-0.6848  

    Median :-0.2508   Median :-0.1218  

    Mean   : 0.0000   Mean   : 0.0000  

    3rd Qu.: 0.6395   3rd Qu.: 0.6054  

    Max.   : 3.9040   Max.   : 2.4429

    We will notice that the values are now mean centering values.

Activity 7: Identifying Outliers

Solution:

  1. Load the dataset:

    mtcars = read.csv("mtcars.csv")

  2. Load the outlier package and use the outlier function to display the outliers:

    #Load the outlier library

    library(outliers)

  3. Detect outliers in the dataset using the outlier() function:

    #Detect outliers

    outlier(mtcars)

    The output is as follows:

        mpg     cyl    disp      hp    drat      wt    qsec      vs      am

        gear    carb

    33.900   4.000 472.000 335.000   4.930   5.424  22.900   

    1.000   1.000   5.000   8.000

  4. Display the other side of the outlier values:

    #This detects outliers from the other side

    outlier(mtcars,opposite=TRUE)

    The output is as follows:

       mpg    cyl   disp     hp   drat     wt   qsec     vs     am

       gear   carb

    10.400  8.000 71.100 52.000  2.760  1.513 14.500  0.000  0.000

      3.000  1.000

  5. Plot a box plot:

    #View the outliers

    boxplot(Mushroom)

    The output is as follows:

Figure 2.36: Outliers in the mtcars dataset.
Figure 2.36: Outliers in the mtcars dataset.

The circle marks are the outliers.

Activity 8: Oversampling and Undersampling

Solution:

The detailed solution is as follows:

  1. Read the mushroom CSV file:

    ms<-read.csv('mushrooms.csv')

    summary(ms$bruises)

    The output is as follows:

       f    t

    4748 3376

  2. Perform downsampling:

    set.seed(9560)

    undersampling <- downSample(x = ms[, -ncol(ms)], y = ms$bruises)

    table(undersampling$bruises)

    The output is as follows:

       f    t

    3376 3376

  3. Perform oversampling:

    set.seed(9560)

    oversampling <- upSample(x = ms[, -ncol(ms)],y = ms$bruises)

    table(oversampling$bruises)

    The output is as follows:

       f    t

    4748 4748

    In this activity, we learned to use downSample() and upSample() from the caret package to perform downsampling and oversampling.

Activity 9: Sampling and OverSampling using ROSE

Solution:

The detailed solution is as follows:

  1. Load the German credit dataset:

    #load the dataset

    library(caret)

    library(ROSE)

    data(GermanCredit)

  2. View the samples in the German credit dataset:

    #View samples

    head(GermanCredit)

    str(GermanCredit)

  3. Check the number of unbalanced data in the German credit dataset using the summary() method:

    #View the imbalanced data

    summary(GermanCredit$Class)

    The output is as follows:

    Bad Good

     300  700

  4. Use ROSE to balance the numbers:

    balanced_data <- ROSE(Class ~ ., data  = stagec,seed=3)$data

    table(balanced_data$Class)

    The output is as follows:

    Good  Bad

     480  520

    Using the preceding example, we learned how to increase and decrease the class count using ROSE.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime