Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Practical Machine Learning Cookbook

You're reading from   Practical Machine Learning Cookbook Supervised and unsupervised machine learning simplified

Arrow left icon
Product type Paperback
Published in Apr 2017
Publisher Packt
ISBN-13 9781785280511
Length 570 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Atul Tripathi Atul Tripathi
Author Profile Icon Atul Tripathi
Atul Tripathi
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Introduction to Machine Learning FREE CHAPTER 2. Classification 3. Clustering 4. Model Selection and Regularization 5. Nonlinearity 6. Supervised Learning 7. Unsupervised Learning 8. Reinforcement Learning 9. Structured Prediction 10. Neural Networks 11. Deep Learning 12. Case Study - Exploring World Bank Data 13. Case Study - Pricing Reinsurance Contracts 14. Case Study - Forecast of Electricity Consumption

Vector quantization - image clustering

The development of technology in the field of digital media generates huge amounts of non-textual information in the form of images. If programs could comprehend the significance of these images and understand what they mean, this could result in a vast number of different applications. One such application could be the use of robots to extract malign tissue from hospital patients using body scan images to interpret the location of the tissue. Images are considered one of the most important media for conveying information. The potential for the retrieval of information is vast, so much so that users may be overwhelmed by the sheer amount of information retrieved. The unstructured format of images challenges classification and clustering techniques. Machine learning algorithms are used to extract information to understand images. One of the first steps towards understanding images is to segment them and identify the different objects...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image