Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
PHP 7 Data Structures and Algorithms

You're reading from   PHP 7 Data Structures and Algorithms Implement linked lists, stacks, and queues using PHP

Arrow left icon
Product type Paperback
Published in May 2017
Publisher Packt
ISBN-13 9781786463890
Length 340 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Mizanur Rahman Mizanur Rahman
Author Profile Icon Mizanur Rahman
Mizanur Rahman
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Introduction to Data Structures and Algorithms FREE CHAPTER 2. Understanding PHP Arrays 3. Using Linked Lists 4. Constructing Stacks and Queues 5. Applying Recursive Algorithms - Recursion 6. Understanding and Implementing Trees 7. Using Sorting Algorithms 8. Exploring Search Options 9. Putting Graphs into Action 10. Understanding and Using Heaps 11. Solving Problems with Advanced Techniques 12. PHP Built-In Support for Data Structures and Algorithms 13. Functional Data Structures with PHP

Understanding the minimum spanning tree (MST)

Suppose we are designing our new office campus with multiple buildings interconnected to each other. If we approach the problem by considering the interconnectivity between each building, it will take a huge number of cables. However, if we could somehow connect all the buildings through a common connectivity where each building is connected to every other building with only one connection, then this solution will reduce the redundancy and cost. If we think of our buildings as vertices and the connectivity between buildings as the edges, we can construct a graph using this approach. The problem we are trying to solve is also known as the minimum spanning tree, or MST. Consider the following graph. We have 10 vertices and 21 edges. However, we can connect all 10 vertices with only nine edges (the dark line). This will...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image