Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Pandas Cookbook

You're reading from   Pandas Cookbook Recipes for Scientific Computing, Time Series Analysis and Data Visualization using Python

Arrow left icon
Product type Paperback
Published in Oct 2017
Publisher Packt
ISBN-13 9781784393878
Length 532 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Theodore Petrou Theodore Petrou
Author Profile Icon Theodore Petrou
Theodore Petrou
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Pandas Foundations 2. Essential DataFrame Operations FREE CHAPTER 3. Beginning Data Analysis 4. Selecting Subsets of Data 5. Boolean Indexing 6. Index Alignment 7. Grouping for Aggregation, Filtration, and Transformation 8. Restructuring Data into a Tidy Form 9. Combining Pandas Objects 10. Time Series Analysis 11. Visualization with Matplotlib, Pandas, and Seaborn

Making the index meaningful

The index of a DataFrame provides a label for each of the rows. If no index is explicitly provided upon DataFrame creation, then by default, a RangeIndex is created with labels as integers from 0 to n-1, where n is the number of rows.

Getting ready

This recipe replaces the meaningless default row index of the movie dataset with the movie title, which is much more meaningful.

How to do it...

  1. Read in the movie dataset, and use the set_index method to set the title of each movie as the new index:
>>> movie = pd.read_csv('data/movie.csv')
>>> movie2 = movie.set_index('movie_title')
>>> movie2
  1. Alternatively, it is possible to choose a column as the index upon initial read with the index_col parameter of the read_csv function:
>>> movie = pd.read_csv('data/movie.csv', index_col='movie_title')

How it works...

A meaningful index is one that clearly identifies each row. The default RangeIndex is not very helpful. Since each row identifies data for exactly one movie, it makes sense to use the movie title as the label. If you know ahead of time which column will make a good index, you can specify this upon import with the index_col parameter of the read_csv function.

By default, both set_index and read_csv drop the column used as the index from the DataFrame. With set_index, it is possible to keep the column in the DataFrame by setting the drop parameter to False.

There's more...

Conversely, it is possible to turn the index into a column with the reset_index method. This will make movie_title a column again and revert the index back to a RangeIndex. reset_index always puts the column as the very first one in the DataFrame, so the columns may not be in their original order:

>>> movie2.reset_index()

See also

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime