References
The following are the references for this chapter:
- Tony Duan, A. Avati, D. Ding, S. Basu, A. Ng, and Alejandro Schuler. (2019). NGBoost: Natural Gradient Boosting for Probabilistic Prediction. International Conference on Machine Learning. https://proceedings.mlr.press/v119/duan20a/duan20a.pdf.
- Y. Gal and Zoubin Ghahramani. (2015). Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. International Conference on Machine Learning. https://proceedings.mlr.press/v48/gal16.html.
- Valentin Flunkert, David Salinas, and Jan Gasthaus. (2017). DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks. International Journal of Forecasting. https://www.sciencedirect.com/science/article/pii/S0169207019301888.
- Koenker, Roger. (2005). Quantile Regression. Cambridge University Press. pp. 146–7. ISBN 978-0-521-60827-5. http://www.econ.uiuc.edu/~roger/research/rq/QRJEP.pdf.
- Spyros Makridakis, Evangelos...