Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Mastering Machine Learning with Spark 2.x
Mastering Machine Learning with Spark 2.x

Mastering Machine Learning with Spark 2.x: Harness the potential of machine learning, through spark

Arrow left icon
Profile Icon Max Pumperla Profile Icon Tellez Profile Icon Malohlava
Arrow right icon
zł59.99 zł177.99
Full star icon Full star icon Full star icon Full star icon Full star icon 5 (1 Ratings)
eBook Aug 2017 340 pages 1st Edition
eBook
zł59.99 zł177.99
Paperback
zł221.99
Subscription
Free Trial
Arrow left icon
Profile Icon Max Pumperla Profile Icon Tellez Profile Icon Malohlava
Arrow right icon
zł59.99 zł177.99
Full star icon Full star icon Full star icon Full star icon Full star icon 5 (1 Ratings)
eBook Aug 2017 340 pages 1st Edition
eBook
zł59.99 zł177.99
Paperback
zł221.99
Subscription
Free Trial
eBook
zł59.99 zł177.99
Paperback
zł221.99
Subscription
Free Trial

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Table of content icon View table of contents Preview book icon Preview Book

Mastering Machine Learning with Spark 2.x

Detecting Dark Matter - The Higgs-Boson Particle

True or false? Positive or negative? Pass or no pass? User clicks on the ad versus not clicking the ad? If you've ever asked/encountered these questions before then you are already familiar with the concept of binary classification.

At it's core, binary classification - also referred to as binomial classification - attempts to categorize a set of elements into two distinct groups using a classification rule, which in our case, can be a machine learning algorithm. This chapter shows how to deal with it in the context of Spark and big data. We are going to explain and demonstrate:

  • Spark MLlib models for binary classification including decision trees, random forest, and the gradient boosted machine
  • Binary classification support in H2O
  • Searching for the best model in a hyperspace of parameters
  • Evaluation metrics for binomial...

Type I versus type II error

Binary classifiers have intuitive interpretation since they are trying to separate data points into two groups. This sounds simple, but we need to have some notion of measuring the quality of this separation. Furthermore, one important characteristic of a binary classification problem is that, often, the proportion of one group of labels versus the other can be disproportionate. That means the dataset may be imbalanced with respect to one label which necessitates careful interpretation by the data scientist.

Suppose, for example, we are trying to detect the presence of a particular rare disease in a population of 15 million people and we discover that - using a large subset of the population - only 10,000 or 10 million individuals actually carry the disease. Without taking this huge disproportion into consideration, the most naive algorithm would guess...

Spark start and data load

Now it's time to fire up a Spark cluster which will give us all the functionality of Spark while simultaneously allowing us to use H2O algorithms and visualize our data. As always, we must download Spark 2.1 distribution from http://spark.apache.org/downloads.html and declare the execution environment beforehand. For example, if you download spark-2.1.1-bin-hadoop2.6.tgz from the Spark download page, you can prepare the environment in the following way:

tar -xvf spark-2.1.1-bin-hadoop2.6.tgz 
export SPARK_HOME="$(pwd)/spark-2.1.1-bin-hadoop2.6 

When the environment is ready, we can start the interactive Spark shell with Sparkling Water packages and this book package:

export SPARKLING_WATER_VERSION="2.1.12"
export SPARK_PACKAGES=\
"ai.h2o:sparkling-water-core_2.11:${SPARKLING_WATER_VERSION},\
ai.h2o:sparkling-water-repl_2.11:$...

Summary

This chapter was all about the binary classification problem: true or false and, for our example, the signal indicative of the Higgs-Boson or background noise? We have explored four different algorithms: single decision tree, random forest, gradient boosted machine, and DNN. For this exact problem, DNNs are the current world-beaters as the models can continue to train for longer (that is, increase the number of epochs) and more layers can be added (http://papers.nips.cc/paper/5351-searching-for-higgs-boson-decay-modes-with-deep-learning.pdf)

In addition to exploring four algorithms and how to perform a grid-search against many hyper-parameters, we also looked at some important model metrics to help you better differentiate between models and understand ways to define how good is good. Our goal for this chapter was to expose you to a variety of different algorithms and...

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • • Process and analyze big data in a distributed and scalable way
  • • Write sophisticated Spark pipelines that incorporate elaborate extraction
  • • Build and use regression models to predict flight delays

Description

The purpose of machine learning is to build systems that learn from data. Being able to understand trends and patterns in complex data is critical to success; it is one of the key strategies to unlock growth in the challenging contemporary marketplace today. With the meteoric rise of machine learning, developers are now keen on finding out how can they make their Spark applications smarter. This book gives you access to transform data into actionable knowledge. The book commences by defining machine learning primitives by the MLlib and H2O libraries. You will learn how to use Binary classification to detect the Higgs Boson particle in the huge amount of data produced by CERN particle collider and classify daily health activities using ensemble Methods for Multi-Class Classification. Next, you will solve a typical regression problem involving flight delay predictions and write sophisticated Spark pipelines. You will analyze Twitter data with help of the doc2vec algorithm and K-means clustering. Finally, you will build different pattern mining models using MLlib, perform complex manipulation of DataFrames using Spark and Spark SQL, and deploy your app in a Spark streaming environment.

Who is this book for?

Are you a developer with a background in machine learning and statistics who is feeling limited by the current slow and “small data” machine learning tools? Then this is the book for you! In this book, you will create scalable machine learning applications to power a modern data-driven business using Spark. We assume that you already know the machine learning concepts and algorithms and have Spark up and running (whether on a cluster or locally) and have a basic knowledge of the various libraries contained in Spark.

What you will learn

  • • Use Spark streams to cluster tweets online
  • • Run the PageRank algorithm to compute user influence
  • • Perform complex manipulation of DataFrames using Spark
  • • Define Spark pipelines to compose individual data transformations
  • • Utilize generated models for off-line/on-line prediction
  • • Transfer the learning from an ensemble to a simpler Neural Network
  • • Understand basic graph properties and important graph operations
  • • Use GraphFrames, an extension of DataFrames to graphs, to study graphs using an elegant query language
  • • Use K-means algorithm to cluster movie reviews dataset

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Aug 31, 2017
Length: 340 pages
Edition : 1st
Language : English
ISBN-13 : 9781785282416
Vendor :
Apache
Category :
Languages :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want

Product Details

Publication date : Aug 31, 2017
Length: 340 pages
Edition : 1st
Language : English
ISBN-13 : 9781785282416
Vendor :
Apache
Category :
Languages :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just zł20 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just zł20 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 690.97
Apache Spark 2.x Machine Learning Cookbook
zł221.99
Mastering Machine Learning with Spark 2.x
zł221.99
Mastering Spark for Data Science
zł246.99
Total 690.97 Stars icon

Table of Contents

8 Chapters
Introduction to Large-Scale Machine Learning and Spark Chevron down icon Chevron up icon
Detecting Dark Matter - The Higgs-Boson Particle Chevron down icon Chevron up icon
Ensemble Methods for Multi-Class Classification Chevron down icon Chevron up icon
Predicting Movie Reviews Using NLP and Spark Streaming Chevron down icon Chevron up icon
Word2vec for Prediction and Clustering Chevron down icon Chevron up icon
Extracting Patterns from Clickstream Data Chevron down icon Chevron up icon
Graph Analytics with GraphX Chevron down icon Chevron up icon
Lending Club Loan Prediction Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Full star icon Full star icon 5
(1 Ratings)
5 star 100%
4 star 0%
3 star 0%
2 star 0%
1 star 0%
Canming Oct 21, 2017
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Awesome book to get you started in machine learning.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.