Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Elasticsearch 5.x

You're reading from   Mastering Elasticsearch 5.x Master the intricacies of Elasticsearch 5 and use it to create flexible and scalable search solutions

Arrow left icon
Product type Paperback
Published in Feb 2017
Publisher Packt
ISBN-13 9781786460189
Length 428 pages
Edition 3rd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Bharvi Dixit Bharvi Dixit
Author Profile Icon Bharvi Dixit
Bharvi Dixit
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Revisiting Elasticsearch and the Changes FREE CHAPTER 2. The Improved Query DSL 3. Beyond Full Text Search 4. Data Modeling and Analytics 5. Improving the User Search Experience 6. The Index Distribution Architecture 7. Low-Level Index Control 8. Elasticsearch Administration 9. Data Transformation and Federated Search 10. Improving Performance 11. Developing Elasticsearch Plugins 12. Introducing Elastic Stack 5.0

Preprocessing data within Elasticsearch with ingest nodes

We gave you a brief overview about ingest nodes under the Node types in Elasticsearch section of Chapter 8, ElasticSearch Administration. In this section, we are going to cover ingest node functionalities in detail.

Ingest nodes, which are introduced in Elasticsearch 5.0, help in preprocessing the data and enriching them before they are actually indexed. This helps a lot in scenarios where you have to use a custom parser or Logstash for processing documents and enriching them, before sending to Elasticsearch. Now you can do all those things within Elasticsearch itself. This preprocessing is achieved with the help of defining a pipeline and a series of one or more processors. Each processor transforms the document in some way. For example, you can add a new field with a custom value or remove a field completely.

Working with ingest pipeline

An ingest pipeline has the following structure:

{ 
  "description" : "......
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image