Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Apache Spark 2.x

You're reading from   Mastering Apache Spark 2.x Advanced techniques in complex Big Data processing, streaming analytics and machine learning

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781786462749
Length 354 pages
Edition 2nd Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Romeo Kienzler Romeo Kienzler
Author Profile Icon Romeo Kienzler
Romeo Kienzler
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. A First Taste and What’s New in Apache Spark V2 FREE CHAPTER 2. Apache Spark SQL 3. The Catalyst Optimizer 4. Project Tungsten 5. Apache Spark Streaming 6. Structured Streaming 7. Apache Spark MLlib 8. Apache SparkML 9. Apache SystemML 10. Deep Learning on Apache Spark with DeepLearning4j and H2O 11. Apache Spark GraphX 12. Apache Spark GraphFrames 13. Apache Spark with Jupyter Notebooks on IBM DataScience Experience 14. Apache Spark on Kubernetes

Spark graph processing

Graph processing is another very important topic when it comes to data analysis. In fact, a majority of problems can be expressed as a graph.

A graph is basically a network of items and their relationships to each other. Items are called nodes and relationships are called edges. Relationships can be directed or undirected. Relationships, as well as items, can have properties. So a map, for example, can be represented as a graph as well. Each city is a node and the streets between the cities are edges. The distance between the cities can be assigned as properties on the edge.

The Apache Spark GraphX module allows Apache Spark to offer fast big data in-memory graph processing. This allows you to run graph algorithms at scale.

One of the most famous algorithms, for example, is the traveling salesman problem. Consider the graph representation of the map mentioned earlier. A salesman has to visit all cities of a region but wants to minimize the distance that he has to travel. As the distances between all the nodes are stored on the edges, a graph algorithm can actually tell you the optimal route. GraphX is able to create, manipulate, and analyze graphs using a variety of built-in algorithms.

It introduces two new data types to support graph processing in Spark--VertexRDD and EdgeRDD--to represent graph nodes and edges. It also introduces graph processing algorithms, such as PageRank and triangle processing. Many of these functions will be examined in Chapter 11, Apache Spark GraphX and Chapter 12, Apache Spark GraphFrames.

You have been reading a chapter from
Mastering Apache Spark 2.x - Second Edition
Published in: Jul 2017
Publisher: Packt
ISBN-13: 9781786462749
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image