Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning with scikit-learn Quick Start Guide

You're reading from   Machine Learning with scikit-learn Quick Start Guide Classification, regression, and clustering techniques in Python

Arrow left icon
Product type Paperback
Published in Oct 2018
Publisher Packt
ISBN-13 9781789343700
Length 172 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Kevin Jolly Kevin Jolly
Author Profile Icon Kevin Jolly
Kevin Jolly
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Introducing Machine Learning with scikit-learn 2. Predicting Categories with K-Nearest Neighbors FREE CHAPTER 3. Predicting Categories with Logistic Regression 4. Predicting Categories with Naive Bayes and SVMs 5. Predicting Numeric Outcomes with Linear Regression 6. Classification and Regression with Trees 7. Clustering Data with Unsupervised Machine Learning 8. Performance Evaluation Methods 9. Other Books You May Enjoy

The inner mechanics of the linear regression algorithm

In its most fundamental form, the expression for the linear regression algorithm can be written as follows:

In the preceding equation, the output of the model is a numeric outcome. In order to obtain this numeric outcome, we require that each input feature be multiplied with a parameter called Parameter1, and we add the second parameter, Parameter2, to this result.

So, in other words, our task is to find the values of the two parameters that can predict the value of the numeric outcome as accurately as possible. In visual terms, consider the following diagram:

Two-dimensional plot between the target and input feature

The preceding diagram shows a two-dimensional plot between the target that we want to predict on the y axis (numeric output) and the input feature, which is along the x axis. The goal of linear regression is...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime