Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Machine Learning with LightGBM and Python
Machine Learning with LightGBM and Python

Machine Learning with LightGBM and Python: A practitioner's guide to developing production-ready machine learning systems

Arrow left icon
Profile Icon Andrich van Wyk
Arrow right icon
zł59.99 zł161.99
Full star icon Full star icon Full star icon Full star icon Half star icon 4.4 (8 Ratings)
eBook Sep 2023 252 pages 1st Edition
eBook
zł59.99 zł161.99
Paperback
zł201.99
Subscription
Free Trial
Arrow left icon
Profile Icon Andrich van Wyk
Arrow right icon
zł59.99 zł161.99
Full star icon Full star icon Full star icon Full star icon Half star icon 4.4 (8 Ratings)
eBook Sep 2023 252 pages 1st Edition
eBook
zł59.99 zł161.99
Paperback
zł201.99
Subscription
Free Trial
eBook
zł59.99 zł161.99
Paperback
zł201.99
Subscription
Free Trial

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

Machine Learning with LightGBM and Python

Introducing Machine Learning

Our journey starts with an introduction to machine learning and the fundamental concepts we’ll use throughout this book.

We’ll start by providing an overview of machine learning from a software engineering perspective. Then, we’ll introduce the core concepts that are used in the field of machine learning and data science: models, datasets, learning paradigms, and other details. This introduction will include a practical example that clearly illustrates the machine learning terms discussed.

We will also introduce decision trees, a crucially important machine learning algorithm that is our first step to understanding LightGBM.

After completing this chapter, you will have established a solid foundation in machine learning and the practical application of machine learning techniques.

The following main topics will be covered in this chapter:

  • What is machine learning?
  • Introducing models, datasets, and supervised learning
  • Decision tree learning
Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Get started with LightGBM, a powerful gradient-boosting library for building ML solutions
  • Apply data science processes to real-world problems through case studies
  • Elevate your software by building machine learning solutions on scalable platforms
  • Purchase of the print or Kindle book includes a free PDF eBook

Description

Machine Learning with LightGBM and Python is a comprehensive guide to learning the basics of machine learning and progressing to building scalable machine learning systems that are ready for release. This book will get you acquainted with the high-performance gradient-boosting LightGBM framework and show you how it can be used to solve various machine-learning problems to produce highly accurate, robust, and predictive solutions. Starting with simple machine learning models in scikit-learn, you’ll explore the intricacies of gradient boosting machines and LightGBM. You’ll be guided through various case studies to better understand the data science processes and learn how to practically apply your skills to real-world problems. As you progress, you’ll elevate your software engineering skills by learning how to build and integrate scalable machine-learning pipelines to process data, train models, and deploy them to serve secure APIs using Python tools such as FastAPI. By the end of this book, you’ll be well equipped to use various -of-the-art tools that will help you build production-ready systems, including FLAML for AutoML, PostgresML for operating ML pipelines using Postgres, high-performance distributed training and serving via Dask, and creating and running models in the Cloud with AWS Sagemaker.

Who is this book for?

This book is for software engineers aspiring to be better machine learning engineers and data scientists unfamiliar with LightGBM, looking to gain in-depth knowledge of its libraries. Basic to intermediate Python programming knowledge is required to get started with the book. The book is also an excellent source for ML veterans, with a strong focus on ML engineering with up-to-date and thorough coverage of platforms such as AWS Sagemaker, PostgresML, and Dask.

What you will learn

  • Get an overview of ML and working with data and models in Python using scikit-learn
  • Explore decision trees, ensemble learning, gradient boosting, DART, and GOSS
  • Master LightGBM and apply it to classification and regression problems
  • Tune and train your models using AutoML with FLAML and Optuna
  • Build ML pipelines in Python to train and deploy models with secure and performant APIs
  • Scale your solutions to production readiness with AWS Sagemaker, PostgresML, and Dask

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Sep 29, 2023
Length: 252 pages
Edition : 1st
Language : English
ISBN-13 : 9781800563056
Category :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : Sep 29, 2023
Length: 252 pages
Edition : 1st
Language : English
ISBN-13 : 9781800563056
Category :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just zł20 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just zł20 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 565.97
Causal Inference and Discovery in Python
zł161.99
Machine Learning for Imbalanced Data
zł201.99
Machine Learning with LightGBM and Python
zł201.99
Total 565.97 Stars icon

Table of Contents

16 Chapters
Part 1: Gradient Boosting and LightGBM Fundamentals Chevron down icon Chevron up icon
Chapter 1: Introducing Machine Learning Chevron down icon Chevron up icon
Chapter 2: Ensemble Learning – Bagging and Boosting Chevron down icon Chevron up icon
Chapter 3: An Overview of LightGBM in Python Chevron down icon Chevron up icon
Chapter 4: Comparing LightGBM, XGBoost, and Deep Learning Chevron down icon Chevron up icon
Part 2: Practical Machine Learning with LightGBM Chevron down icon Chevron up icon
Chapter 5: LightGBM Parameter Optimization with Optuna Chevron down icon Chevron up icon
Chapter 6: Solving Real-World Data Science Problems with LightGBM Chevron down icon Chevron up icon
Chapter 7: AutoML with LightGBM and FLAML Chevron down icon Chevron up icon
Part 3: Production-ready Machine Learning with LightGBM Chevron down icon Chevron up icon
Chapter 8: Machine Learning Pipelines and MLOps with LightGBM Chevron down icon Chevron up icon
Chapter 9: LightGBM MLOps with AWS SageMaker Chevron down icon Chevron up icon
Chapter 10: LightGBM Models with PostgresML Chevron down icon Chevron up icon
Chapter 11: Distributed and GPU-Based Learning with LightGBM Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.4
(8 Ratings)
5 star 62.5%
4 star 12.5%
3 star 25%
2 star 0%
1 star 0%
Filter icon Filter
Top Reviews

Filter reviews by




Om S Oct 10, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
"Machine Learning with LightGBM and Python" is a fantastic guide for both beginners and experienced folks. It introduces you to the powerful LightGBM framework, making machine learning easier. You'll learn about decision trees, gradient boosting, and more in simple language. The book takes you through practical case studies, so you can use machine learning to solve real problems.As you progress, you'll even learn how to build and scale your machine learning systems using tools like FastAPI and AWS Sagemaker. It's perfect for anyone who wants to improve their machine learning skills. You should know some Python, but you don't need to be an expert. This book is your key to understanding LightGBM and mastering machine learning.In short, it's a great book for those who want to excel in machine learning and build production-ready systems.
Amazon Verified review Amazon
H2N Oct 16, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
"Machine Learning with LightGBM and Python" is a detailed guide tailored for both newcomers and experts in machine learning. It sheds light on the LightGBM framework, emphasizing hands-on experience with key concepts like decision trees and gradient boosting. The book starts with foundational machine learning topics, then ventures into ensemble learning, showcasing algorithms like random forests. It prominently features LightGBM, comparing its strengths with other methods like XGBoost and deep neural networks. The text also explores hyperparameter optimization using Optuna, offers practical case studies, and introduces AutoML via FLAML. Transitioning from theory to application, it discusses ML pipelines, MLOps, AWS SageMaker, and harnessing distributed computing with LightGBM. This book is a comprehensive roadmap for mastering machine learning with Python and LightGBM.
Amazon Verified review Amazon
Amazon Customer Nov 09, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
The book strikes a good balance between theory and practical applications, ensuring that readers understand both the underlying principles and their real-world relevance. The code examples are well-structured and easy to follow, making it effortless for readers to implement the concepts discussed in the book. particularly appreciated the chapter on bagging and boosting which is the principle of LightGBM. The book also covers various evaluation metrics and hyperparameter tuning, providing readers with a comprehensive understanding of model optimization. While the book focuses on Light GBM, it also touches upon other important machine learning concepts, ensuring readers have a well-rounded understanding of the field.Overall, "Machine Learning with Light GBM and Python" is a valuable resource for anyone interested in leveraging the power of Light GBM in their machine learning projects. Whether you're a beginner or an experienced practitioner, this book will equip you with the knowledge and practical skills needed to excel in the field of machine learning.
Amazon Verified review Amazon
Sangita Mahala Nov 29, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I strongly suggest this book for individuals who possess an interest in data, a proficiency in Python programming, and a curiosity to delve into the diverse realm of machine learning with LightGBM. It will undoubtedly enhance their skill set.
Amazon Verified review Amazon
Steven Fernandes Oct 29, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book offers a comprehensive introduction to machine learning (ML) with a focus on Python and scikit-learn. It guides readers through various ML techniques, including decision trees, ensemble learning, and advanced methods like gradient boosting, DART, and GOSS. Special attention is given to mastering LightGBM for both classification and regression challenges. The book also emphasizes the importance of AutoML tools like FLAML and Optuna for model optimization. Readers will learn to construct ML pipelines for efficient training and deployment, and how to scale their ML solutions using AWS Sagemaker, PostgresML, and Dask for production-level applications.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.