Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Machine Learning Projects for Mobile Applications
Machine Learning Projects for Mobile Applications

Machine Learning Projects for Mobile Applications: Build Android and iOS applications using TensorFlow Lite and Core ML

Arrow left icon
Profile Icon NG
Arrow right icon
Free Trial
Paperback Oct 2018 246 pages 1st Edition
eBook
zł59.99 zł141.99
Paperback
zł177.99
Subscription
Free Trial
Arrow left icon
Profile Icon NG
Arrow right icon
Free Trial
Paperback Oct 2018 246 pages 1st Edition
eBook
zł59.99 zł141.99
Paperback
zł177.99
Subscription
Free Trial
eBook
zł59.99 zł141.99
Paperback
zł177.99
Subscription
Free Trial

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Machine Learning Projects for Mobile Applications

CNN Based Age and Gender Identification Using Core ML

In this chapter, we are going to build an iOS application to detect the age, gender, and emotion of a person from the camera feed or from the user's photo gallery. We will use existing data models that were built for the same purpose using the Caffe machine learning (ML) library, and convert those models into Core ML models for the ease of use in our application. We will discuss more how Convolutional Neural Networks (CNNs) work in terms of predicting age, gender, and emotion with the sample application. 

This application can be useful with multiple use cases. A few cases are as follows:

  • Finding what kind of photos you capture by parsing all the photos from your gallery
  • Understanding the customer entering a location (hospital, restaurant, and so on)
  • Figuring out the right marketing data by actually capturing...

Age, gender, and emotion prediction

This chapter is going to cover a complete iOS application using Core ML models to detect age, gender, and emotion from a photo taken using an iPhone camera or from a photo in a user's phone gallery.

Core ML enables developers to install and run pre-trained models on a device, and this has its own advantages. Since Core ML lives in the local device, it is not necessary to call a cloud service in order to get the prediction results. This improves the communication latency and also saves data bandwidth. The other crucial benefit of Core ML is privacy. You don't need to send your data to a third party in order to get the results picked for you. The main downside of having an offline model is that the model cannot be updated, and so it cannot be improved with newer inputs. Furthermore, a few models might increase memory footprints, since...

Convolutional Neural Networks 

One of the earliest applications of neural networks was demonstrated with Optical Character Recognition (OCR), but they were limited by time, computational resources, and other challenges faced when training bigger networks.

CNN is a part of feedforward neural networks, which are influenced by biological processes. This works in the same way that neurons work in the brain, as well as the connectivity patterns between them. These neurons will respond to stimuli that are only in a specific region in the visual field, known as the receptive field. When multiple neurons overlap each other, they will cover the whole visual field. The following diagram shows the CNN architecture:

CNN has an input layer and one output layer, as well as multiple hidden layers. These hidden layers consist of pooling layers, convolutional layers,...

The implementation on iOS using Core ML

It is now time to jump into the coding part of the application. We are using a model developed using the Caffe deep learning framework by Berkeley AI Research (BAIR) team as well as the community of contributors. As a first step, we need to convert the existing Caffe models into Core ML models to be utilized in our application:

//Downloading Age and Gender models 
wget
http://www.openu.ac.il/home/hassner/projects/cnn_agegender/cnn_age_gen
der_models_and_data.0.0.2.zip
unzip -a cnn_age_gender_models_and_data.0.0.2.zip

Now, go to the extracted folder and convert the model into a Core ML model:

import coremltools

folder = 'cnn_age_gender_models_and_data.0.0.2'

coreml_model = coremltools.converters.caffe.convert(
(folder + '/age_net.caffemodel', folder + '/deploy_age.prototxt'),
image_input_names = &apos...

Summary

In this chapter, we learned to build a complete iOS application from scratch. We also learned how to convert a Caffe model into a Core ML model. Now we know how to import a Core ML model into an iOS app and get the predicted results from the model. By doing this, we save data bandwidth without using the internet, and the data remains on a local device without affecting user privacy.

In the next chapter, with this knowledge, we'll move on to building an application to apply an artistic style to an existing image through neural networks.

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Explore machine learning using classification, analytics, and detection tasks.
  • Work with image, text and video datasets to delve into real-world tasks
  • Build apps for Android and iOS using Caffe, Core ML and Tensorflow Lite

Description

Machine learning is a technique that focuses on developing computer programs that can be modified when exposed to new data. We can make use of it for our mobile applications and this book will show you how to do so. The book starts with the basics of machine learning concepts for mobile applications and how to get well equipped for further tasks. You will start by developing an app to classify age and gender using Core ML and Tensorflow Lite. You will explore neural style transfer and get familiar with how deep CNNs work. We will also take a closer look at Google’s ML Kit for the Firebase SDK for mobile applications. You will learn how to detect handwritten text on mobile. You will also learn how to create your own Snapchat filter by making use of facial attributes and OpenCV. You will learn how to train your own food classification model on your mobile; all of this will be done with the help of deep learning techniques. Lastly, you will build an image classifier on your mobile, compare its performance, and analyze the results on both mobile and cloud using TensorFlow Lite with an RCNN. By the end of this book, you will not only have mastered the concepts of machine learning but also learned how to resolve problems faced while building powerful apps on mobiles using TensorFlow Lite, Caffe2, and Core ML.

Who is this book for?

Machine Learning Projects for Mobile Applications is for you if you are a data scientist, machine learning expert, deep learning, or AI enthusiast who fancies mastering machine learning and deep learning implementation with practical examples using TensorFlow Lite and CoreML. Basic knowledge of Python programming language would be an added advantage.

What you will learn

  • Demystify the machine learning landscape on mobile
  • Age and gender detection using TensorFlow Lite and Core ML
  • Use ML Kit for Firebase for in-text detection, face detection, and barcode scanning
  • Create a digit classifier using adversarial learning
  • Build a cross-platform application with face filters using OpenCV
  • Classify food using deep CNNs and TensorFlow Lite on iOS

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Oct 31, 2018
Length: 246 pages
Edition : 1st
Language : English
ISBN-13 : 9781788994590
Category :
Languages :
Tools :

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Oct 31, 2018
Length: 246 pages
Edition : 1st
Language : English
ISBN-13 : 9781788994590
Category :
Languages :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just zł20 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just zł20 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 577.97
Intelligent Mobile Projects with TensorFlow
zł221.99
Machine Learning Projects for Mobile Applications
zł177.99
Machine Learning for Mobile
zł177.99
Total 577.97 Stars icon

Table of Contents

10 Chapters
Mobile Landscapes in Machine Learning Chevron down icon Chevron up icon
CNN Based Age and Gender Identification Using Core ML Chevron down icon Chevron up icon
Applying Neural Style Transfer on Photos Chevron down icon Chevron up icon
Deep Diving into the ML Kit with Firebase Chevron down icon Chevron up icon
A Snapchat-Like AR Filter on Android Chevron down icon Chevron up icon
Handwritten Digit Classifier Using Adversarial Learning Chevron down icon Chevron up icon
Face-Swapping with Your Friends Using OpenCV Chevron down icon Chevron up icon
Classifying Food Using Transfer Learning Chevron down icon Chevron up icon
What's Next? Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.