Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning Engineering  with Python

You're reading from   Machine Learning Engineering with Python Manage the lifecycle of machine learning models using MLOps with practical examples

Arrow left icon
Product type Paperback
Published in Aug 2023
Publisher Packt
ISBN-13 9781837631964
Length 462 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Andrew P. McMahon Andrew P. McMahon
Author Profile Icon Andrew P. McMahon
Andrew P. McMahon
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Introduction to ML Engineering 2. The Machine Learning Development Process FREE CHAPTER 3. From Model to Model Factory 4. Packaging Up 5. Deployment Patterns and Tools 6. Scaling Up 7. Deep Learning, Generative AI, and LLMOps 8. Building an Example ML Microservice 9. Building an Extract, Transform, Machine Learning Use Case 10. Other Books You May Enjoy
11. Index

Summary

This chapter was all about building a solid foundation for future work. We discussed the development steps common to all ML engineering projects, which we called “Discover, Play, Develop, Deploy,” and contrasted this way of thinking against traditional methodologies like CRISP-DM. In particular, we outlined the aim of each of these steps and their desired outputs.

This was followed by a high-level discussion of tooling and a walkthrough of the main setup steps. We set up the tools for developing our code, keeping track of the changes to that code, managing our ML engineering project, and finally, deploying our solutions.

In the rest of the chapter, we went through the details for each of the four steps we outlined previously, with a particular focus on the Develop and Deploy stages. Our discussion covered everything from the pros and cons of Waterfall and Agile development methodologies to environment management and then software development best practices. We explored how to package your ML solution and what deployment infrastructure is available for you to use, and outlined the basics of setting up your DevOps and MLOps workflows. We finished up the chapter by discussing, in some detail, how to apply testing to our ML code, including how to automate this testing as part of CI/CD pipelines. This was then extended into the concepts of continuous model performance testing and continuous model training.

In the next chapter, we will turn our attention to how to build out the software for performing the automated training and retraining of your models using a lot of the techniques we have discussed here.

Join our community on Discord

Join our community’s Discord space for discussion with the author and other readers:

https://packt.link/mle

You have been reading a chapter from
Machine Learning Engineering with Python - Second Edition
Published in: Aug 2023
Publisher: Packt
ISBN-13: 9781837631964
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image