Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learning Data Mining with Python

You're reading from   Learning Data Mining with Python Use Python to manipulate data and build predictive models

Arrow left icon
Product type Paperback
Published in Apr 2017
Publisher Packt
ISBN-13 9781787126787
Length 358 pages
Edition 2nd Edition
Languages
Concepts
Arrow right icon
Toc

Table of Contents (14) Chapters Close

Preface 1. Getting Started with Data Mining FREE CHAPTER 2. Classifying with scikit-learn Estimators 3. Predicting Sports Winners with Decision Trees 4. Recommending Movies Using Affinity Analysis 5. Features and scikit-learn Transformers 6. Social Media Insight using Naive Bayes 7. Follow Recommendations Using Graph Mining 8. Beating CAPTCHAs with Neural Networks 9. Authorship Attribution 10. Clustering News Articles 11. Object Detection in Images using Deep Neural Networks 12. Working with Big Data 13. Next Steps...

Unit testing


When creating your own functions and classes, it is always a good idea to do unit testing. Unit testing aims to test a single unit of your code. In this case, we want to test that our transformer does as it needs to do.

Good tests should be independently verifiable. A good way to confirm the legitimacy of your tests is by using another computer language or method to perform the calculations. In this case, I used Excel to create a dataset, and then computed the mean for each cell. Those values were then transferred to the unit test.

Unit tests should also, generally, be small and quick to run. Therefore, any data used should be of a small size. The dataset I used for creating the tests is stored in the Xt variable from earlier, which we will recreate in our test. The mean of these two features is 13.5 and 15.5, respectively.

To create our unit test, we import theassert_array_equal function from NumPy's testing, which checks whether two arrays are equal:

from numpy.testing import...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime