Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Introducing Microsoft SQL Server 2019

You're reading from   Introducing Microsoft SQL Server 2019 Reliability, scalability, and security both on premises and in the cloud

Arrow left icon
Product type Paperback
Published in Apr 2020
Publisher Packt
ISBN-13 9781838826215
Length 488 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (8):
Arrow left icon
Allan Hirt Allan Hirt
Author Profile Icon Allan Hirt
Allan Hirt
Dustin Ryan Dustin Ryan
Author Profile Icon Dustin Ryan
Dustin Ryan
Mitchell Pearson Mitchell Pearson
Author Profile Icon Mitchell Pearson
Mitchell Pearson
Kellyn Gorman Kellyn Gorman
Author Profile Icon Kellyn Gorman
Kellyn Gorman
Dave Noderer Dave Noderer
Author Profile Icon Dave Noderer
Dave Noderer
Buck Woody Buck Woody
Author Profile Icon Buck Woody
Buck Woody
Arun Sirpal Arun Sirpal
Author Profile Icon Arun Sirpal
Arun Sirpal
James Rowland-Jones James Rowland-Jones
Author Profile Icon James Rowland-Jones
James Rowland-Jones
+4 more Show less
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Optimizing for performance, scalability and real‑time insights 2. Enterprise Security FREE CHAPTER 3. High Availability and Disaster Recovery 4. Hybrid Features – SQL Server and Microsoft Azure 5. SQL Server 2019 on Linux 6. SQL Server 2019 in Containers and Kubernetes 7. Data Virtualization 8. Machine Learning Services Extensibility Framework 9. SQL Server 2019 Big Data Clusters 10. Enhancing the Developer Experience 11. Data Warehousing 12. Analysis Services 13. Power BI Report Server 14. Modernization to the Azure Cloud

Contrasting data virtualization and data movement

While data virtualization is a great solution for several scenarios, there are some cases where a data movement pipeline is preferred. Data virtualization interrogates the data source at query time, so you see the latest, freshest state of the data. However, your queries are limited to data available at query time and you are dependent upon the source system for row versioning. What should you do when you need to perform historic analysis over time? When a data source doesn't support historic states of the data, you need to curate this data using a data movement approach.

Even when the data is available, data virtualization provides a more limited set of data transformation capabilities compared to a data movement strategy. While you can implement some rudimentary data quality rules in your query, if the data itself requires significant cleansing or transformation, then a data movement approach offers ultimate flexibility for...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime