One of the ways to compute the expectation of a joint probability distribution is to generate a lot of samples from the joint probability distribution by Gibbs sampling and then take the mean value of the samples as the expected value. In Gibbs sampling, each of the variables in the joint probability distribution can be sampled, conditioned on the rest of the variables. Since the visible units are independent, given the hidden units and vice versa, you can sample the hidden unit as and then the visible unit activation given the hidden unit as . We can then take the sample as one sampled from the joint probability distribution. In this way, we can generate a huge number of samples, say M, and take their mean to compute the desired expectation. However, doing such extensive sampling in each step of gradient descent is going to make the training process unacceptably...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine