Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Reactive Programming with Python

You're reading from   Hands-On Reactive Programming with Python Event-driven development unraveled with RxPY

Arrow left icon
Product type Paperback
Published in Oct 2018
Publisher Packt
ISBN-13 9781789138726
Length 420 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Romain Picard Romain Picard
Author Profile Icon Romain Picard
Romain Picard
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. An Introduction to Reactive Programming FREE CHAPTER 2. Asynchronous Programming in Python 3. Functional Programming with ReactiveX 4. Exploring Observables and Observers 5. Concurrency and Parallelism in RxPY 6. Implementation of an Audio Transcoding Server 7. Using Third-Party Services 8. Dynamic Reconfiguration and Error Management 9. Operators in RxPY 10. Testing and Debugging 11. Deploying and Scaling Your Application 12. Reactive Streams for Remote Communication 13. A Checklist of Best Practices 14. Assessments 15. Other Books You May Enjoy

Chapter 2

Why is asynchronous programming more efficient at handling I/O concurrency than multiple processes/threads?

Asynchronous programming is a very effective solution when dealing with I/O concurrency because it allows us to multiplex I/O actions without memory or computing overhead. Alternative solutions that are based on multithreading or multiprocesses require either more CPU either more memory, or even both.

Multithreading hits a limit when 1,000 threads are running concurrently. On heavy workloads, this puts some pressure on the OS scheduler and ends up wasting a lot of CPU resources due to contention.

Multiprocess solutions face the same problem, but also require more memory because the address space of the program is allocated for each instance of the program. Some of this memory is shared between these instances (such as the code sections), but a big part has to be...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image