Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Natural Language Processing with PyTorch 1.x

You're reading from   Hands-On Natural Language Processing with PyTorch 1.x Build smart, AI-driven linguistic applications using deep learning and NLP techniques

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781789802740
Length 276 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Thomas Dop Thomas Dop
Author Profile Icon Thomas Dop
Thomas Dop
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Section 1: Essentials of PyTorch 1.x for NLP
2. Chapter 1: Fundamentals of Machine Learning and Deep Learning FREE CHAPTER 3. Chapter 2: Getting Started with PyTorch 1.x for NLP 4. Section 2: Fundamentals of Natural Language Processing
5. Chapter 3: NLP and Text Embeddings 6. Chapter 4: Text Preprocessing, Stemming, and Lemmatization 7. Section 3: Real-World NLP Applications Using PyTorch 1.x
8. Chapter 5: Recurrent Neural Networks and Sentiment Analysis 9. Chapter 6: Convolutional Neural Networks for Text Classification 10. Chapter 7: Text Translation Using Sequence-to-Sequence Neural Networks 11. Chapter 8: Building a Chatbot Using Attention-Based Neural Networks 12. Chapter 9: The Road Ahead 13. Other Books You May Enjoy

Chapter 9: The Road Ahead

The field of machine learning is rapidly expanding, with new revelations being made almost yearly. The field of machine learning for NLP is no exception, with advancements being made rapidly and the performance of machine learning models on NLP tasks incrementally increasing.

So far in this book, we have discussed a number of machine learning methodologies that allow us to build models to perform NLP tasks such as classification, translation, and approximating conversation via a chatbot. However, as we have seen so far, the performance of our models has been worse and relative to that of a human being. Even using the techniques we have examined so far, including sequence-to-sequence networks with attention mechanisms, we are unlikely to train a chatbot model that will match or outperform a real person. However, we will see in this chapter that recent developments in the field of NLP have been made that bring us one step closer to the goal of creating chatbots...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime