Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Data Structures and Algorithms with Rust

You're reading from   Hands-On Data Structures and Algorithms with Rust Learn programming techniques to build effective, maintainable, and readable code in Rust 2018

Arrow left icon
Product type Paperback
Published in Jan 2019
Publisher Packt
ISBN-13 9781788995528
Length 316 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Claus Matzinger Claus Matzinger
Author Profile Icon Claus Matzinger
Claus Matzinger
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Heaps and stacks

As we discussed in Chapter 1, Hello Rust!, stack variables are preferred thanks to their low overhead and speed compared to heap-allocated data, which automatically introduces overhead thanks to the necessary heap pointer. For stack variables, Rust's types even allow for zero overhead structures, so no additional metadata is stored. The following snippet asserts that there are no additional bytes being used for arrays or user-defined types:

use std::mem;

struct MyStruct {
a: u8,
b: u8,
c: u8
}

fn main() {
assert_eq!(mem::size_of::<MyStruct>(), 3 * mem::size_of::<u8>());
assert_eq!(mem::size_of::<[MyStruct; 2]>(), 3 * mem::size_of::<u8>() * 2);
}

Consequently, the size of an instance of the MyStruct type is always going to be three bytes—perfectly suitable for placing it on the stack. Why is that good? In short, data...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime