Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Graph Machine Learning

You're reading from   Graph Machine Learning Take graph data to the next level by applying machine learning techniques and algorithms

Arrow left icon
Product type Paperback
Published in Jun 2021
Publisher Packt
ISBN-13 9781800204492
Length 338 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Aldo Marzullo Aldo Marzullo
Author Profile Icon Aldo Marzullo
Aldo Marzullo
Claudio Stamile Claudio Stamile
Author Profile Icon Claudio Stamile
Claudio Stamile
Enrico Deusebio Enrico Deusebio
Author Profile Icon Enrico Deusebio
Enrico Deusebio
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1 – Introduction to Graph Machine Learning
2. Chapter 1: Getting Started with Graphs FREE CHAPTER 3. Chapter 2: Graph Machine Learning 4. Section 2 – Machine Learning on Graphs
5. Chapter 3: Unsupervised Graph Learning 6. Chapter 4: Supervised Graph Learning 7. Chapter 5: Problems with Machine Learning on Graphs 8. Section 3 – Advanced Applications of Graph Machine Learning
9. Chapter 6: Social Network Graphs 10. Chapter 7: Text Analytics and Natural Language Processing Using Graphs 11. Chapter 8:Graph Analysis for Credit Card Transactions 12. Chapter 9: Building a Data-Driven Graph-Powered Application 13. Chapter 10: Novel Trends on Graphs 14. Other Books You May Enjoy

Summary

In this chapter, we described how a classical fraud detection task can be described as a graph problem and how the techniques described in the previous chapter can be used to tackle the problem. Going into more detail, we introduced the dataset we used and described the procedure to transform the transactional data into two types of graph, namely, bipartite and tripartite undirected graphs. We then computed local (along with their distributions) and global metrics for both graphs, comparing the results.

Moreover, a community detection algorithm was applied to the graphs in order to spot and plot specific regions of the transaction graph where the density of fraudulent transactions is higher compared to the other communities.

Finally, we solved the fraud detection problem using supervised and unsupervised algorithms, comparing the performances of the bipartite and tripartite graphs. As the first step, since the problem was unbalanced with a higher presence of genuine transactions...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime