Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Graph Data Science with Neo4j

You're reading from   Graph Data Science with Neo4j Learn how to use Neo4j 5 with Graph Data Science library 2.0 and its Python driver for your project

Arrow left icon
Product type Paperback
Published in Jan 2023
Publisher Packt
ISBN-13 9781804612743
Length 288 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Estelle Scifo Estelle Scifo
Author Profile Icon Estelle Scifo
Estelle Scifo
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Part 1 – Creating Graph Data in Neo4j
2. Chapter 1: Introducing and Installing Neo4j FREE CHAPTER 3. Chapter 2: Importing Data into Neo4j to Build a Knowledge Graph 4. Part 2 – Exploring and Characterizing Graph Data with Neo4j
5. Chapter 3: Characterizing a Graph Dataset 6. Chapter 4: Using Graph Algorithms to Characterize a Graph Dataset 7. Chapter 5: Visualizing Graph Data 8. Part 3 – Making Predictions on a Graph
9. Chapter 6: Building a Machine Learning Model with Graph Features 10. Chapter 7: Automatically Extracting Features with Graph Embeddings for Machine Learning 11. Chapter 8: Building a GDS Pipeline for Node Classification Model Training 12. Chapter 9: Predicting Future Edges 13. Chapter 10: Writing Your Custom Graph Algorithms with the Pregel API in Java 14. Index 15. Other Books You May Enjoy

Digging into the Neo4j GDS library

The GDS library was first released in 2020. It was the successor of the Graph Algorithm plugin, which first appeared in 2019. Since then, a lot of improvements have been performed in terms of performance and standardization, and a lot of new features have been added, both in terms of algorithm parametrization and new kinds of algorithms. In the following subsections, we give an overview of its content and working principles.

GDS content

As the name suggests, the GDS library contains tools to be used in a data science project using data stored in Neo4j. This includes the following:

  • Path-related algorithms
  • Graph algorithms
  • Machine learning (ML) models and pipelines
  • Python client

Let’s talk in a bit more detail about each of these aspects, to understand when and where they are useful.

Path-related algorithms

In graph theory, traversing a graph to find specific paths from one node to another (typically the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime