Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Distributed Computing with Python

You're reading from   Distributed Computing with Python Harness the power of multiple computers using Python through this fast-paced informative guide

Arrow left icon
Product type Paperback
Published in Apr 2016
Publisher
ISBN-13 9781785889691
Length 170 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Rasheedh B Rasheedh B
Author Profile Icon Rasheedh B
Rasheedh B
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. An Introduction to Parallel and Distributed Computing FREE CHAPTER 2. Asynchronous Programming 3. Parallelism in Python 4. Distributed Applications – with Celery 5. Python in the Cloud 6. Python on an HPC Cluster 7. Testing and Debugging Distributed Applications 8. The Road Ahead Index

Common problems – permissions and environments


Different computers might run our code under different user accounts, and our application might expect to be able to read a file or write data into a specific directory and hit an unexpected permission error. Even in cases where the user accounts used by our code are all the same (down to the same user ID and group ID), their environment may be different on different hosts. Therefore, an environment variable we assumed to be defined might not be or, even worse, might be set to an incompatible value.

These problems are common when our code runs as a special, unprivileged user, such as nobody. Defensive coding, especially when accessing the environment, and making sure to always fall back to sensible defaults when variables are undefined (that is, value = os.environ.get('SOME_VAR', fallback_value) instead of simply value = os.environ.get['SOME_VAR']) is often necessary.

A common approach, when this is possible, is to only run our applications under...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image