Deep Reinforcement Learning with Python: Master classic RL, deep RL, distributional RL, inverse RL, and more with OpenAI Gym and TensorFlow
, Second Edition
Covers a vast spectrum of basic-to-advanced RL algorithms with mathematical explanations of each algorithm
Learn how to implement algorithms with code by following examples with line-by-line explanations
Explore the latest RL methodologies such as DDPG, PPO, and the use of expert demonstrations
Description
With significant enhancements in the quality and quantity of algorithms in recent years, this second edition of Hands-On Reinforcement Learning with Python has been revamped into an example-rich guide to learning state-of-the-art reinforcement learning (RL) and deep RL algorithms with TensorFlow 2 and the OpenAI Gym toolkit.
In addition to exploring RL basics and foundational concepts such as Bellman equation, Markov decision processes, and dynamic programming algorithms, this second edition dives deep into the full spectrum of value-based, policy-based, and actor-critic RL methods. It explores state-of-the-art algorithms such as DQN, TRPO, PPO and ACKTR, DDPG, TD3, and SAC in depth, demystifying the underlying math and demonstrating implementations through simple code examples.
The book has several new chapters dedicated to new RL techniques, including distributional RL, imitation learning, inverse RL, and meta RL. You will learn to leverage stable baselines, an improvement of OpenAI’s baseline library, to effortlessly implement popular RL algorithms. The book concludes with an overview of promising approaches such as meta-learning and imagination augmented agents in research.
By the end, you will become skilled in effectively employing RL and deep RL in your real-world projects.
Who is this book for?
If you’re a machine learning developer with little or no experience with neural networks interested in artificial intelligence and want to learn about reinforcement learning from scratch, this book is for you.
Basic familiarity with linear algebra, calculus, and the Python programming language is required. Some experience with TensorFlow would be a plus.
What you will learn
Understand core RL concepts including the methodologies, math, and code
Train an agent to solve Blackjack, FrozenLake, and many other problems using OpenAI Gym
Train an agent to play Ms Pac-Man using a Deep Q Network
Learn policy-based, value-based, and actor-critic methods
Master the math behind DDPG, TD3, TRPO, PPO, and many others
Explore new avenues such as the distributional RL, meta RL, and inverse RL
Use Stable Baselines to train an agent to walk and play Atari games
This is the best book I have read so far in RL. Please get the second edition and not the first edition. This second edition is completely rewritten and includes so many advanced topics as well. I have read the popular first edition as well. I can say this second edition is completely different from the first edition. So please get this second edition rather than the first edition book.I just wanna thank the author for crafting this masterpiece of a book it is. I have no idea what I would have done without this book. It helped me a big time at work and I can now proudly say that this book made me a pro in RL to deep RL.So to mention again, go for this second edition. My humble thanks to the author again. This book must be a revolution in RL field.
Amazon Verified review
MaheshApr 17, 2021
5
Wonderful read for beginner like me, complex maths and concepts are clearly explained with examples. Must buy for anyone interested to jump into Reinforcement Learning. Thanks a lot Sudharsan Ravichandiran !!!
Amazon Verified review
Amazon CustomerJan 22, 2021
5
I own and have read pretty much all of the DRL books that were published in the past 3 years, and I can with certainty say that this book is by far the best on the subject. An amazing clarity of explanation combined with the vast scope. Thank you so very much Sudharsan!
Amazon Verified review
DhruvNov 16, 2020
5
Best Deep Reinforcement Learning book available in the market. It covers everything from scratch.Must buy for serious learners.
Amazon Verified review
GaneshNov 06, 2023
5
I give full marks for ease and elegance with which the topic is dealt with. I had so much struggle learning from the other popular ones. However nothing registered in my mind. This book makes it really easy.Highly recommended.
Sudharsan Ravichandiran is a data scientist and artificial intelligence enthusiast. He holds a Bachelors in Information Technology from Anna University. His area of research focuses on practical implementations of deep learning and reinforcement learning including natural language processing and computer vision. He is an open-source contributor and loves answering questions on Stack Overflow.
Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.
If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.
Please Note: Packt eBooks are non-returnable and non-refundable.
Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:
You may make copies of your eBook for your own use onto any machine
You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website?
If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:
Register on our website using your email address and the password.
Search for the title by name or ISBN using the search option.
Select the title you want to purchase.
Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title.
Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook?
If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
To view your account details or to download a new copy of the book go to www.packtpub.com/account
Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.
You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.
What are the benefits of eBooks?
You can get the information you need immediately
You can easily take them with you on a laptop
You can download them an unlimited number of times
You can print them out
They are copy-paste enabled
They are searchable
There is no password protection
They are lower price than print
They save resources and space
What is an eBook?
Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.
When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.
For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.