Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Augmentation with Python

You're reading from   Data Augmentation with Python Enhance deep learning accuracy with data augmentation methods for image, text, audio, and tabular data

Arrow left icon
Product type Paperback
Published in Apr 2023
Publisher Packt
ISBN-13 9781803246451
Length 394 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Duc Haba Duc Haba
Author Profile Icon Duc Haba
Duc Haba
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part 1: Data Augmentation
2. Chapter 1: Data Augmentation Made Easy FREE CHAPTER 3. Chapter 2: Biases in Data Augmentation 4. Part 2: Image Augmentation
5. Chapter 3: Image Augmentation for Classification 6. Chapter 4: Image Augmentation for Segmentation 7. Part 3: Text Augmentation
8. Chapter 5: Text Augmentation 9. Chapter 6: Text Augmentation with Machine Learning 10. Part 4: Audio Data Augmentation
11. Chapter 7: Audio Data Augmentation 12. Chapter 8: Audio Data Augmentation with Spectrogram 13. Part 5: Tabular Data Augmentation
14. Chapter 9: Tabular Data Augmentation 15. Index 16. Other Books You May Enjoy

Word augmenting

In this chapter, the word augmenting techniques are similar to the methods from Chapter 5, which used the Nlpaug library. The difference is that rather than Python libraries, the wrapper functions use powerful ML models to achieve remarkable results. Sometimes, the output or rewritten text is akin to human writers.

In particular, you will learn four new techniques and two variants each. Let’s start with Word2Vec:

  • The Word2Vec method uses the neural network NLP Word2Vec algorithm and the GoogleNews-vectors-negative300 pre-trained model. Google trained it using a large corpus containing about 100 billion words and 300 dimensions. Substitute and insert are the two mode variants.
  • The BERT method uses Google’s transformer algorithm and BERT pre-trained model. Substitute and insert are the two mode variants.
  • The RoBERTa method is a variation of the BERT model. Substitute and insert are the two mode variants.
  • The last word augmenting technique...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime