Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Applying Math with Python

You're reading from   Applying Math with Python Over 70 practical recipes for solving real-world computational math problems

Arrow left icon
Product type Paperback
Published in Dec 2022
Publisher Packt
ISBN-13 9781804618370
Length 376 pages
Edition 2nd Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Sam Morley Sam Morley
Author Profile Icon Sam Morley
Sam Morley
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Chapter 1: An Introduction to Basic Packages, Functions, and Concepts 2. Chapter 2: Mathematical Plotting with Matplotlib FREE CHAPTER 3. Chapter 3: Calculus and Differential Equations 4. Chapter 4: Working with Randomness and Probability 5. Chapter 5: Working with Trees and Networks 6. Chapter 6: Working with Data and Statistics 7. Chapter 7: Using Regression and Forecasting 8. Chapter 8: Geometric Problems 9. Chapter 9: Finding Optimal Solutions 10. Chapter 10: Improving Your Productivity 11. Index 12. Other Books You May Enjoy

Generating random data

Many tasks involve generating large quantities of random numbers, which, in their most basic form, are either integers or floating-point numbers (double-precision) lying within the range . Ideally, these numbers should be selected uniformly, so that if we draw a large number of these numbers, they are distributed roughly evenly across the range .

In this recipe, we will see how to generate large quantities of random integers and floating-point numbers using NumPy, and show the distribution of these numbers using a histogram.

Getting ready

Before we start, we need to import the default_rng routine from the NumPy random module and create an instance of the default random number generator to use in the recipe:

from numpy.random import default_rng
rng = default_rng(12345) # changing seed for reproducibility

We have discussed this process in the Selecting items at random recipe.

We also import the Matplotlib pyplot module under the plt alias.

...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime