Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Handbook of NLP with Gensim

You're reading from   The Handbook of NLP with Gensim Leverage topic modeling to uncover hidden patterns, themes, and valuable insights within textual data

Arrow left icon
Product type Paperback
Published in Oct 2023
Publisher Packt
ISBN-13 9781803244945
Length 310 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Chris Kuo Chris Kuo
Author Profile Icon Chris Kuo
Chris Kuo
Arrow right icon
View More author details
Toc

Table of Contents (24) Chapters Close

Preface 1. Part 1: NLP Basics
2. Chapter 1: Introduction to NLP FREE CHAPTER 3. Chapter 2: Text Representation 4. Chapter 3: Text Wrangling and Preprocessing 5. Part 2: Latent Semantic Analysis/Latent Semantic Indexing
6. Chapter 4: Latent Semantic Analysis with scikit-learn 7. Chapter 5: Cosine Similarity 8. Chapter 6: Latent Semantic Indexing with Gensim 9. Part 3: Word2Vec and Doc2Vec
10. Chapter 7: Using Word2Vec 11. Chapter 8: Doc2Vec with Gensim 12. Part 4: Topic Modeling with Latent Dirichlet Allocation
13. Chapter 9: Understanding Discrete Distributions 14. Chapter 10: Latent Dirichlet Allocation 15. Chapter 11: LDA Modeling 16. Chapter 12: LDA Visualization 17. Chapter 13: The Ensemble LDA for Model Stability 18. Part 5: Comparison and Applications
19. Chapter 14: LDA and BERTopic 20. Chapter 15: Real-World Use Cases 21. Assessments 22. Index 23. Other Books You May Enjoy

Introduction to CBOW

The neural network of CBOW is shown in Figure 7.7. It looks like the mirror image of SG. The input layer consists of words that are adjacent to the target words. Again, we are interested in the weights in the hidden layer. They will be the word embeddings.

Figure 7.7 – The structure of a CBOW model

Figure 7.7 – The structure of a CBOW model

The word pairs of the input words and the output words become the pairs as shown in Figure 7.8. They are just the reverse of the word pairs in Figure 7.5. The structure of the neural network is reversed too. Between the hidden layer and the output layer is a 300 x 10,000 weight matrix. This weight matrix is what we are interested in because it has the vector encodings of all the unique words. If we inspect carefully, we will see most of the input nodes are zeros; the weights coming from the non-zero input nodes are the ones contributing to the hidden layer. The ith row in the weight matrix is the weight for the ith word.

...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime