Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
The Applied Artificial Intelligence Workshop

You're reading from   The Applied Artificial Intelligence Workshop Start working with AI today, to build games, design decision trees, and train your own machine learning models

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781800205819
Length 420 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Anthony So Anthony So
Author Profile Icon Anthony So
Anthony So
Zsolt Nagy Zsolt Nagy
Author Profile Icon Zsolt Nagy
Zsolt Nagy
William So William So
Author Profile Icon William So
William So
Arrow right icon
View More author details
Toc

Table of Contents (8) Chapters Close

Preface
1. Introduction to Artificial Intelligence 2. An Introduction to Regression FREE CHAPTER 3. An Introduction to Classification 4. An Introduction to Decision Trees 5. Artificial Intelligence: Clustering 6. Neural Networks and Deep Learning Appendix

Random Forest Classifier

If you think about the name random forest classifier, it can be explained as follows:

  • A forest consists of multiple trees.
  • These trees can be used for classification.
  • Since the only tree we have used so far for classification is a decision tree, it makes sense that the random forest is a forest of decision trees.
  • The random nature of the trees means that our decision trees are constructed in a randomized manner.

Therefore, we will base our decision tree construction on information gain or Gini Impurity.

Once you understand these basic concepts, you essentially know what a random forest classifier is all about. The more trees you have in the forest, the more accurate prediction is going to be. When performing prediction, each tree performs classification. We collect the results, and the class that gets the most votes wins.

Random forests can be used for regression as well as for classification. When using random forests...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime