Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Sustainable IT Playbook for Technology Leaders
Sustainable IT Playbook for Technology Leaders

Sustainable IT Playbook for Technology Leaders: Design and implement sustainable IT practices and unlock sustainable business opportunities

eBook
₱1714.98 ₱2449.99
Paperback
₱3061.99
Audiobook
₱2500.99
Subscription
Free Trial

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
Table of content icon View table of contents Preview book icon Preview Book

Sustainable IT Playbook for Technology Leaders

Our Most Significant Challenge Ahead

Earth’s life support systems are the sum of the planet’s ice sheets, oceans, forests, rivers, lakes, a rich diversity of life, and gigantic recirculations of carbon, water, nitrogen, and phosphorus. The system is now most definitely unstable and could push it over the edge, taking us – 7.8 billion people – with it.

– Johan Rockström

This chapter will teach you about the basics of climate change and understand the breadth and depth that digitalization and hyperconnectivity have on our society.

The main objectives of this chapter are to introduce you to climate change. It will teach you basic concepts such as the Greenhouse Gas (GHG) protocol, carbon accounting, scope 1, 2, 3, and 4 definitions, the Science-Based Targets initiative (SBTi), net-zero standards, and circular economy principles. These key concepts will be beneficial in later chapters when we dig into sustainable IT practices for you to understand how everything is linked together and what actionable insights you can formulate.

In this chapter, we will cover the following topics:

  • Climate change – why is it our most significant challenge ahead?
  • What causes climate change?
  • What are GHG emissions?
  • History of sustainability
  • Sustainability trends
  • The Paris Agreement
  • EU taxonomy
  • Sustainable finance
  • GHG protocol corporate standard
  • Science-based targets
  • Circular economy practices
  • The well-kept secret of the IT industry

Additionally, this chapter includes a point of view from Nicole Mercedes Zethelius, Head of Global Sustainability and ESG Strategy at CGI, on the importance of data-driven Environmental, Social, and Governance (ESG) decision-making.

By the end of this chapter, you will have learned about the fundamentals of climate change, and understand the implications of IT on the environment, what we need to do to start living more sustainably within the constraints of planet Earth, and what you can do in your IT decisions to ensure greener practices.

Climate change – our most significant challenge ahead

The 2022 global risks report published by the World Economic Forum highlights climate action failure as the number one risk over the next decade. The effects are felt all over the planet in extreme heat, cold, massive precipitation, drought, or wildfire. Climate change affects us all. It is a global problem that we jointly need to work on to solve. GHG emissions are more than 50% higher than in 1990. On February 27, 2022, the Intergovernmental Panel on Climate Change (IPCC) released Part 2, which paints a grim picture that we continue to spiral downward but some solutions are starting to emerge to curb the climate crisis. We need to urgently transition into a sustainable way of living where we stay well within the constraints of Earth. Humanity is currently taking significantly more than we put back in. We use the equivalent of 1.75 % of Earth’s resources to provide the resources we use and absorb our waste (Ginér, et al. 2022).

Due to rising temperatures, we are approaching a tipping point, or what scientists have labeled as the danger zone. We are not taking the necessary and drastic steps to avoid a global crisis at an unprecedented scale with unimaginable consequences. To stop climate change quickly enough, we need to think differently to develop solutions that can break the carbon emission curve. The concept of net-zero carbon emissions has emerged from physical climate science. Climate policy has had a new focus in recent years: net-zero emissions. The Paris Agreement reaffirmed the commitment to limit the global temperature rise to well below 2 OC, preferably around 1.5 OC. Reaching net-zero emissions is often expressed in target dates, such as halving GHG emissions by 2030 and achieving net zero in 2040 or 2050.

According to the United Nations Environment Program (UNEP) 2020 Emissions Gap Report, Global GHG “continued to grow for the third consecutive year in 2019, reaching a record high of 52.4 GtCO2e (range: ± 5.2) without land-use change (LUC) emissions and 59.1 GTCO2e (range: ± 5.9) when including LUC” (UNEP DTU Partnership 2020). There are also other figures floating around out there regarding what the total annual GHG is. For example, Bill Gates’s book, How to Avoid a Climate Disaster, refers to 51 GTCO2 because he did not include LUC. For this book, I have chosen to use the measurement of 59.1 GTCO2e (range: ± 5.9), which also includes LUC emissions. To me, it is not essential to argue the facts of whether we collectively emit 51 or 59 GTCO2e per year, and I would much rather focus on the bigger picture of how we can, as a start, halve our global CO2 emissions in the next decade and stay within the 1.5 OC range.

Prominent scientists such as Johan Rockström and Michael E. Mann are at the forefront, climate advocates such as Christiana Figueres, David Attenborough, Al Gore, and Greta Thunberg, and assessment reports (ipcc.ch 2022) from United Nations IPCC reports tell us that the threat is imminent. We have a severe climate crisis on our hands.

The primary drivers of climate change are human emissions of CO2 and other GHGs, overpopulation, increased loss of biodiversity, an overage of finite earth metals, and an increased waste management problem, especially within electronic waste (e-waste). However, the key fundamental issue is not the exact quantity, but the solutions we need to put in place to decline the growing trend in the coming years. The climate crisis is one of the world’s most pressing challenges (IPCC 2013). Throughout Earth’s history, there has been a link between global temperature and GHG concentrations, especially CO2 (Lacis, et al. 2010).

What are GHG emissions?

Before we go any further, let us dissect what carbon footprint is. You probably have heard the term carbon footprint before, but it can be hard to grasp. Carbon footprint is the amount of GHG emissions generated by private corporate activities during a given period – such as producing a laptop, smartphone, tablet, commuting to work, or shipping a new product. It includes CO2 – the gas most commonly emitted by humans – and other climate-relevant gases such as methane, nitrous oxide, and fluorinated gases. These GHGs convert into tons of CO2 equivalent (in short, tCO2e) to ensure consistency.

Our global countdown illustrated in Figure 1.1 from 59 gigatons to net-zero covers five broad sources of emissions categories: energy, industry, agriculture, transportation, and nature (Doerr 2021). The total yearly emissions of 59 gigatons gives rise to increased heat trapping in the atmosphere. The result of trapped heat gives rise to an increase in Earth’s temperature that scientists believe needs to stay within the 1.5 °C range. The increase in temperature also results in several dangerous knock-on effects, such as melting ice caps, which lead to not only rising sea levels and flooding but also drought and wildfires:

Figure 1.1 – How GHG emissions add up

Figure 1.1 – How GHG emissions add up

The energy sector amounts to 41% of total emissions per year. This is primarily because energy sources draw from fossil fuels such as coal and oil instead of renewable energy sources such as wind, solar, water turbines, and geothermal. The industry sector emits 20%, primarily due to GHG emissions from cement and steel manufacturing, which are both CO2-intensive. GHG emissions from agriculture release 15% of the global total. This is primarily due to the extensive use of fertilizers to grow crops and the release of methane gas from cattle, but the sector also requires an enormous amount of water contributing to water distress. Finally, nature itself releases 10% of total emissions.

To make carbon footprint more tangible, let us look at a few examples. A single flight from London to Los Angeles produces around 1.4 tons of CO2e, which is roughly 8.1 months of the CO2 budget for one person, based on the Paris Agreement’s objective of maintaining global temperature warming “well below” 2 OC. Commuting to work just under one hour a day, roughly 51.5 km (32 miles), amounts to 3.2 tons of CO2 over a full year for the average American. Approximately, one person in the United States emits 17 tons of CO2 per year compared to a person in India who only emits 1.8 tons of CO2. Mining of all the world’s Bitcoin renders a carbon footprint of 114.06 Mt CO2, which is comparable to the carbon footprint of Czech Republic. Mining of just a single Bitcoin generates about 1280.82 kg of CO2, equivalent to the carbon footprint of 2,838,745 Visa transactions or 213,470 hours of watching YouTube (Digiconomist.net n.d). Figure 1.2 illustrates a few examples described earlier:

Figure 1.2 – Carbon emission comparison between common use cases

Figure 1.2 – Carbon emission comparison between common use cases

How did we get here?

In the 1950s, we saw tremendous economic prosperity post World War II (WWII) (O. G. Rockström 2021). Still, it was also the take-off point for global warming, loss of nature, and deterioration of biodiversity. Human ingenuity gave rise to an unprecedented level of global prosperity in the form of rising GDP and income per capita, which was also regrettably unleashed over 12,000 years of relative climate change stability. By introducing emission-intensive forms of production and consumption, we have reached a point where these unprecedented levels are no longer sustainable (ipcc.ch 2021). In the past, there has been financial prosperity at the expense of environmental prosperity. Going forward, we need to find other metrics to measure our prosperity that are better in line with important socio and environmental factors.

Let us look at how the planet has warmed from the 1850s to the present day to set the scene. After seeing a stable period of temperature deviation over the past 10,000 years, we now see that the Earth’s average temperature has started to rise. In the chart from Figure 1.3, we see the global average temperature relative to the period average between 1960 and 1990. The upper and lower gray lines represent the upper and lower confidence intervals, whereas the red line demonstrates the average annual temperature trend:

Figure 1.3 – Indicating a 0.7°C rise in global temperatures

Figure 1.3 – Indicating a 0.7°C rise in global temperatures

Since the 1980s, we have seen a 0.7°C rise in global temperature, which is a sharp rise compared to pre-industrial times in 1850. At that time, we noticed that the temperature was 0.4°C colder than the median. Adding these two together adds up to a 1.1°C average temperature rise (Delworth, et al. 2016).

Scientists have a large consensus that we need to limit global warming to just 1.5°C to stay in the safe zone. This is to avoid the catastrophic impacts of climate change. This was also explicitly called out in the 2015 Paris Agreement: “We cannot rule out that if Earth’s CO2 emission doubles, the Earth’s temperature might double to a catastrophic 5OC” (O. G. Rockström 2021). Cutting GHG emissions in half by 2030 and reaching net zero by 2050 is necessary to avoid a climate apocalypse.

Bending the curve

We need to stabilize concentrations of CO2 and other GHGs in Earth’s atmosphere to slow down rising temperatures and halt increasing global temperatures completely (IPCC 2013). The atmospheric concentration of CO2 measures parts per million (ppm). Since the 1960s, the atmospheric concentration of CO2 has continued to rise. The primary reason for this change was the Industrial Revolution and the rise of human emissions of CO2 from burning fossil fuels. There is a strong belief that the safety limit for CO2 in the atmosphere is around 350 ppm. Unfortunately, as we see in the chart in the following figure, we already reached that landmark back in 1987, and in 2020, we have been surpassing levels above 415 ppm. Time is running out, and the tide is working against us. As global citizens, we need to decarbonize our atmosphere and rapidly bend the curve:

Figure 1.4 – Atmospheric concentrations of CO2 continue to rise

Figure 1.4 – Atmospheric concentrations of CO2 continue to rise

As we have already started to operate outside the planetary boundaries (O. G. Rockström 2021), we need to work toward finding exponential solutions that can halve our GHG emissions by 2030. We need to limit CO2 emissions into the atmosphere to 350 ppm from the 450 ppm we experience today. Built on Moore’s Law principles from the computer industry, the number of transistors in a dense integrated circuit (IC) doubles roughly every two years. The Carbon law is built on a similar principle to halve CO2 emissions every decade from 2020 to 2050 to eventually ramp down emissions to zero. The simple rule of thumb, called the Carbon Law (J. Rockström 2017), applies to everyone, including companies, cities, nations, and citizens. The Carbon Law outlines the global average and should be considered a minimum ambition. As we have seen previously, the estimated yearly level for 2020 is 59 billion tons of GHG emissions (Carbon Disclosure Project n.d.). The Carbon law, as illustrated in Figure 1.5, is necessary for halving our global GHG emissions every decade. By 2030, close to 30 billion tons of GHG need to be reduced and captured from emissions into the atmosphere (J. Rockström 2017):

Figure 1.5 – Carbon Law; we need to halve our CO2 emission every decade until 2050

Figure 1.5 – Carbon Law; we need to halve our CO2 emission every decade until 2050

We need to stabilize Earth’s life support system and rapidly decarbonize. We need to do most of the work in the next decade. From the starting point of 2020, we need to halve our global emissions and continue to do so every decade until 2050. This is a considerable undertaking, and the biggest challenge is halving emissions in the first decade.

Let us stop and reflect: we need to do most of the work in the next decade. How does that make you feel? Does it feel like a daunting task? Does it feel like you want to give up? Hopefully, it is the contrary! I, for one, am a technocrat. Due to rapid technological development since the 1950s, the technology and investments in unsustainable businesses such as oil, coal, and gas got us into this mess; I firmly believe that the solutions to curb the climate crisis also lie within using existing technology in the right way and exploring new technological discoveries and advancements. Most of the key concepts we will explore in this book are already here. But further improvements are still needed, such as managing ICT equipment with full circularity and renewable energy sources to meet the world’s needs.

UN Sustainable Development Goals

In 2015, the United Nations formed a blueprint for achieving a better and more sustainable future. They are a call to action to end poverty, protect the planet, and promote peace and prosperity. They are expressed in 17 goals that should be fulfilled no later than 2030. They are more commonly known as the UN’s 17 Sustainable Development Goals (https://sdgs.un.org/goals).

History of sustainability

Before we jump into the definition of sustainable IT, first, let us zoom out and look at what sustainability means and where it originates. Climate change is not something new, and policymakers, scientists, and activist organizations such as Greenpeace have been trying to turn the spotlights on these issues in the past 50 years. Some significant climate milestones and events have been occurring in the past 5 to 6 decades, as illustrated in Figure 1.6:

Figure 1.6 – History of climate action and policy change

Figure 1.6 – History of climate action and policy change

The first person that turned the spotlight on environmental challenges was Rachel Carson in 1962, with the release of her environmental science book Silent Spring, which opened the issue to the American people. She primarily focused on the uncritical use of pesticides and accused the chemical industry of spreading disinformation.

In 1972, the first United Nations Climate Conference was held in Stockholm, Sweden. This marked the first time that climate was highlighted as a major issue. Since then, 50 decades have passed, and June 2022 marked the 50th anniversary of the event. Once again, the United Nations convened in Stockholm for the Stockholm+50 conference.

Our common future

In 1983, the United Nations appointed former Norwegian prime minister Gro Harlem Brundtland to run the new World Commission on Environment and Development (Our Common Future, Chapter 2, Towards Sustainable Development n.d.). This commission is more famously known as the Brundtland Commission. The Our Common Future report was released after 4 years and outlined sustainable development as “development that meets the needs of the present without compromising the ability of future generations to meet their own needs. (Our Common Future, Chapter 2, Towards Sustainable Development n.d.).

Furthermore, the commission unified environmentalism by defining three pillars of sustainability in the world’s development agenda. The three pillars of sustainability consider ecological, social, and economic dimensions (see Figure 1.7), recognizing that all three elements are heavily dependent on each other to build lasting prosperity:

Figure 1.7 – Three pillars of sustainability: Environment, Society, and Economy

Figure 1.7 – Three pillars of sustainability: Environment, Society, and Economy

Environmental sustainability

Environmental sustainability makes sure that Earth’s ecological integrity is maintained. The planetary boundaries are balanced while natural resources can replenish themselves faster than they are consumed.

Social sustainability

Social sustainability provides fulfillment of basic human necessities for all people worldwide. People have to have access to enough resources to guarantee that their families and communities are healthy and secure.

Economic sustainability

Economic sustainability outlines that all people worldwide can maintain their interdependence and access the resources they require to meet their financial and other needs. The economic system is available and intact for everyone to ensure secure sources of livelihood.

Today, building environmental, social, and economic prosperity has become a mainstream business issue. The expectations of companies have shifted dramatically from, in the past, principally serving shareholders’ needs to serving the employees, customers, and communities in which they operate. It has become necessary for companies to become purpose-driven with solid values and a robust ESG program. Companies that do these things well are more likely to attract and retain top talent, enhance their reputation with investors and customers, and boost shareholder returns.

Triple bottom line – people, planet, and profit

Although Our Common Future was the forefather of defining the three pillars of sustainability, the Triple Bottom Line (3Ps) is the most common framework referenced within business language today. It is still gaining popularity. The 3Ps were created by John Elkington back in 1995, almost three decades ago, and he defines that the key imperative for sustainability is simultaneously maximizing benefits for people, the planet, and profit (Kraaijenbrink 2019). Identical to Our Common Future, the 3Ps stand for people, planet, and profit:

  • People: The citizens of our planet. What positive or negative impact does a corporation have on our people?
  • Planet: Our planet and the environment in which we reside. What positive and negative does an organization have on our planet and our environment?
  • Profit: The financial and long-term value creation of a corporation. What positive and negative impact does an organization have on the local, national, and international economy?

As Figure 1.8 illustrates, when these three factors intersect, you can maximize the benefits and create a sustainable future:

Figure 1.8 – 3Ps of the triple bottom line

Figure 1.8 – 3Ps of the triple bottom line

Several accounting and reporting frameworks have emerged out of the 3Ps, for example, ESG (a framework focusing on Environmental, Social, and Governance factors), Social Return of Investment (SROI), Return of Sustainable Investment (ROSI), and the Trucost approach.

We will be referencing the 3Ps framework frequently throughout the book.

Sustainability trends

Sustainability has become a global trend, and it can no longer be ignored. Here are some of the most relevant sustainability trends to consider as you start thinking about forming your own Sustainable IT agenda:

  • Renewable energy transition: Energy usage amounts to 73.2% of global GHGs (Ritchie 2020), where the most significant share comes from energy use in industry (24.2%), energy use in residential and commercial buildings (17.5%), and transportation (16.2%). The transition from fossil fuel energy to renewable energy is inescapable. As data centers are a large energy consumer, this is a crucial trend. Electrification of the energy and transportation sectors are two must-wins.
  • Sustainable investments on the rise: As the global financial markets are closely interlinked, allocating funds is a powerful lever for climate action. The financial sector is starting to shift funds to ESG investments and setting high standards on ESG criteria. As the ESG criteria become stricter, funding will eventually dry up if there are unmet requirements.
  • Shift to sustainable products: Consumer behavior and purchasing power are powerful change levers. Consumers are increasingly seeking out sustainable products and leaving non-sustainable products on the shelf. A report from Unilever suggests that one-third of consumers seek out environmental and socially responsible products (Unilever 2017). With consumers’ rising expectations of sustainable brands, the report highlights a EUR 966 billion opportunity to be seized out of 2.5 trillion markets. Making the switch to supply the market with sustainable products and services under a sustainable brand will become table stakes to doing business in the future.
  • Sustainable buildings and materials will become the norm: As we saw earlier in the chapter, the industry emits 12 gigatons of CO2, roughly 20% of the total global emission per annum. Cement and steel are two major contributing factors; therefore, there is a big push to overhaul the construction and building landscape. Three major trends are spearheading this transformation within the industry: prefabrication, modularization, and digitalization (building information modeling (BIM). Alternative low-cost carbon materials are being assessed, such as graphene instead of bricks, cross-laminated timber instead of steel, and ethylene tetrafluoroethylene (ETFE) instead of glass (Howarth 2022). There are also several initiatives currently ongoing in Scandinavia to develop carbon-neutral steel.
  • Cost of inaction will surpass the cost of action: Companies have started identifying the risks and the opportunities of developing a solid purpose-led sustainability agenda. The options include developing new products and solutions, strengthening the brand and employee branding, and financial or government incentives. Companies that do not take this route will see their market share and profits dwindle and will fail to recruit talent.

In this section, Nicole Mercedes Zethelius, Head of Global Sustainability and ESG Strategy at CGI, shares her point of view on the importance of data-driven ESG decision-making. CGI is one of the largest IT and business consulting firms in the world and Nicole leads their Global Sustainability and ESG Strategy practice, advising clients on ESG strategy and execution.

The importance of data-driven ESG decision-making

Corporate sustainability is complex for many reasons, with one central crux being that the three pillars holding up the ideology – economic, environmental, and social – are frequently at odds with and contradict one another. To find a balance and make the best possible sustainable business decisions, we will need accurate data to calculate all possible outcomes – both short- and long-term. Right now, the world is only operating on hypotheticals because much of the reliable, up-to-date information needed is not available in the data universe or is disconnected.

Solving most of the world’s problems goes beyond human intervention and intelligence, leveraging technology for connecting IT, OT, IoT, data lakes, clouds, and information that is yet to be connected to the data universe.

It sounds simple enough, doesn’t it? Top management and the big five management consulting firms have spent decades and have amassed billions advising companies to globalize and decentralize, with the tunnel vision of short-term gain. Companies and governments bought this strategy, and it was good while it worked.

But it is not working anymore.

The industry has expanded too quickly, without any logical management foundation considering long-term effects. The world’s economies are now in a sunken cost fallacy typhoon, doubling down on antiquated business models and strategies. Too much focus on over-complexity and short-term profits has created a macro-trend of instability and volatility. And as a final coup de grâce, the COVID-19 pandemic, followed by the war in Ukraine, punctured any hope of mass globalization as a panacea for all problems.

Anecdotally, the day before I met with the leadership of one of the big six oil companies, including the CIO, I read in the news that they had divested several essential rigs. The article stated the core reason was social and political pressures and the focus on renewables.

I do not think any of them expected me – as a senior sustainability and ESG strategy advisor – to advise them not to divest any more essential rigs.

My argument was as follows:

  • Society still desperately requires fossil fuels to function
  • The company has spent decades making mistakes and learning from them
  • It has invested trillions in reducing negative environmental impact while increasing internal and external safety.
  • It has invested billions in researching alternatives to fossil fuels, regenerative models, and IT innovation
  • Most importantly, the company is highly regulated and follows strict legislation and penalties

It only took a few months for another, smaller, oil company that happens to be entirely unregulated, irresponsible, and reprehensible to capitalize on the big company’s attempt to “do the right thing.” Divesting made things far worse environmentally and socially. One thing we know for sure from game-theoretic principles is that while we might know the last move our business opponent has made, we can never be entirely sure of their next move or if they will upend the whole chessboard altogether.

Game theory is arguably the most important discovery about human behavior in the 20th century and was awarded a Nobel Prize in 2002. The theory addresses how individuals and other entities compete and cooperate. Success with the principles comes from the awareness that every decision must be made in relation to the decisions and possible future decisions of others that compete and cooperate within the field. In this case, the giant oil company was so focused on handling the pressures of social capital that they neglected to consider their unregulated, much smaller competitor’s opportunistic moves onto their divested rigs.

Whether private or public enterprise, the common core issue is a lack of connectivity across the value chain. Had the company integrated sustainable IT infrastructure and received accurate data, they could have a proven reason to keep the lucrative rigs and invest in the improvements needed to keep it running in the most sustainable way possible to meet political pressures. It could have set the bar for the entire industry and its duty to invest in more sustainable extraction. Instead, the company took a severe blow to its bottom line while – in reality – enabling more unsustainable business practices.

The preceding case illustrates the need to move away from decision making based on hypotheticals and estimates to strategies based on accurate and actionable data. The surge of interest in sustainable technology is partly due to a rising need for business health and hygiene. Companies need to know what they are doing – by implementing traceability throughout the value chain – and where they are going – by leveraging data using technologies such as automation, AI, and analytics. If correctly implemented, they will enable new revenue streams, more robust risk mitigation, resource access, and ensured longevity.

Nicole Mercedes Zethelius, Head of Global Sustainability and ESG Strategy

The Paris Agreement

At the Conference of the Parties (COP) 21 in Paris, the Paris Agreement, often referred to as the Paris Climate Accords, was adopted in 2015. Signed by 196 parties, the Paris Climate Accords is a legally binding international treaty on climate change. The Paris Agreement was the first unison commitment. World governments have committed to curbing global temperatures, rising to well below 2°C above pre-industrial levels, and pursuing efforts to limit warming to 1.5°C. Under the agreement, each party must draft a plan and report regularly on the progress.

A major flaw with the Paris Agreement is that it lacks a common reporting framework, robust guidelines, and governance. Instead, it leaves it up to its parties to define their emission pathways to net zero. Since there is no common framework based on climate science, the Paris Agreement relies on process.

As we will see later in the chapter, other standards such as the SBTi Net-Zero Standard enable corporations to set a net-zero target. But so far, there has not been a unilateral framework for countries prior to COP 26, which took place in Glasgow, Scotland, in 2021, for ratification of the Paris Rulebook.

The finalization of the Paris Rulebook provides the framework and guidelines for the implementation of the Paris Agreement. It is a significant milestone after many years of negotiations.

Consistent with the objectives in the Paris Agreement, more than 120 countries have now pledged to reach net zero around the mid-century. They include the world’s three largest greenhouse emitters, the EU, the United States, and China (Fankhauser, et al. 2021).

As of June 2021, at least 14 countries – including Germany, Canada, the United Kingdom, and France – had a law or legislation proposed to ratchet down their carbon emission to net zero by 2050. The problem is that all of these countries combined account for only 17% of total global emissions.

Only recently have the very largest emitters begun to signal their ambitions. The Biden administration’s plan for climate action calls for net zero by 2050, an aggressive leap beyond previous administrations’ policy. The EU has committed to doing the same and has enacted the EU Taxonomy Climate Delegated Act (DA). China has declared a national commitment to get there by 2060. India and Russia have yet to make any form of a net-zero pledge.

The 2021 United Nations Climate Change Conference, more commonly called COP26, was the 26th United Nations Climate Change Conference, held in Glasgow, Scotland, United Kingdom. It became apparent, more than ever, that the private sector has a critical role in driving change and leading by example. Requirements for companies to provide transparent reports are continually growing, due to increased pressure from policymakers, investors, organizations, and governing bodies for more transparent and accurate reporting. ESG has become a mainstream business issue, and non-financial disclosure requirements and the EU Taxonomy and SBTi are examples of increased compliance and regulation directives surfacing. Later in the chapter, we will go deeper into the GHG Protocol Corporate Standard and SBTi concepts as they are fundamental concepts to establish our carbon emission IT baseline.

EU Taxonomy

By 2050, Europe plans to become the first climate-neutral continent and make the EU’s economy sustainable (Price 2018). In Europe, the EU met to discuss climate and energy targets for 2030 and reach the objectives of the European green deal. In the summer of 2021, the European Council approved the EU Taxonomy Climate DA, confirming into EU law the adoption of Technical Screening Criteria (TSC) for activities that contribute substantially to the climate change mitigation and adaptation objectives. The EU has seen the need to redirect money toward sustainable projects to make our environmental systems more resilient against climate and environmental shocks.

The EU Taxonomy acts as a central piece to the European Green Deal puzzle to classify whether an economic activity is considered environmentally sustainable. To use a common language and a clear definition of “sustainable,” a standard classification system, the “EU Taxonomy,” was formed. As outlined in Figure 1.9, the EU Taxonomy outlines six environmental objectives to provide policymakers, companies, and investors with a standard set of definitions of what can be classified as ecologically sustainable:

Figure 1.9 – The EU Taxonomy–six environmental objectives

Figure 1.9 – The EU Taxonomy–six environmental objectives

The EU Taxonomy regulation establishes six environmental objectives:

  • Climate change mitigation
  • Climate change adoption
  • The sustainable use and protection of water and marine resources
  • The transition to a circular economy
  • Pollution prevention and control
  • The protection and restoration of biodiversity and ecosystems

The sectors that the EU Taxonomy currently covers are listed as follows:

  • Agriculture, forestry, and fishing
  • Manufacturing
  • Electricity, gas, steam, and air conditioning supplies
  • Water, sewage, waste, and related remediation
  • Transportation and storage
  • ICT
  • Buildings

Any large public-interest company with more than 500 employees falls under the Non-Financial Reporting Directive (NFRD). Additionally, the European Commission has also made it clear that it intends to expand the NFRD into Small- and Medium-Sized Enterprises (SMEs) with time. These companies must disclose non-financial information in annual reports, including sustainability-related policies such as environmental protection. The NFRD directive is being legislated to include the EU Taxonomy from January 2023.

Embedded within the EU Green Deal, the NFRD directive is a leap forward toward consistent sustainability reporting across the EU member states. On April 21st, 2021, the European Commissions adopted an amendment to the NFRD to called Corporate Sustainability Reporting Directive (CSRD) extending the existing reporting requirements. As highlighted in Figure 1.10, the EU Taxonomy will come into effect quite quickly as per the schedule. By 2022, financial institutions and large companies will need to report on Taxonomy eligibility and TSC for climate change adaptation and mitigation to start to apply. By 2023, large companies must report on Taxonomy alignment, and the remainder of the TSC for environmental objectives starts to spread. Finally, by 2024, the entire EU Taxonomy will affect both financial institutions and large companies:

Figure 1.10 – EU Taxonomy – schedule

Figure 1.10 – EU Taxonomy – schedule

The EU Taxonomy is a foundational tool for the European Green Deal. It will have far-reaching impacts on countries even outside the EU due to their interlinked value chains and global economic markets.

Sustainable finance

We all operate within a global economy, which we experienced during the 2008 financial meltdown. The global financial sector is under increased pressure to become more sustainable. Now the financial market actors must disclose sustainable risks and impacts. Because of that, the term “sustainable finance” has been coined, and ESG investments will continue to rise tremendously. At the time of writing the EU Taxonomy, the European Commission published a taxonomy for sustainable finance. It is a classification instrument to help financial players and companies determine which activities qualify as sustainable. The objective is to promote investments in projects and activities that pursue the EU’s environmental goals and contribute to the transition toward a low-carbon economy.

Whether you are a start-up, a non-public company, or a public company, you will likely be required to have access to capital to invest in innovation, market expansion, or acquisitions. Financial market actors that provide finance for and invest in various sectors need to assess these risks and impacts on sustainable investments carefully. In the past, the need for transparency and accurate reporting on sustainable investments did not come under as much scrutiny as it does today, where ESG criteria weigh in heavily. Now financial market actors need to disclose many indicators that make a case for sustainable investments that are more favorable from a climate point of view. Marta Muñoz Méndez-Villamil, Technology for Sustainability and Social Impact Practice Lead in Europe at International Data Corporation (IDC), says:

If you are not transparent, you are doomed.

Some of the critical questions that financial institutions might ask themselves when looking at a prospective company seeking capital include the following:

  • In what way does this investment mitigate climate change or promote adoption?
  • What is the risk exposure if the company actively pursues a sustainable agenda?
  • What is the ROSI?
  • What sustainable public commitment has the company made? Have they committed to the SBTi?

As the financial markets rapidly shift their asset allocation toward ESG investments, capital for non-sustainable corporate ventures will eventually dry up. Clear evidence of this is due to the sharp drop in oil prices and investments are shifting to sustainable investments. If the oil price is too low, then it is no longer economically sustainable to draw oil out of the ground, refine it, store it, transport it, and sell it. As a result of dropping oil prices and finance institutions reallocating their asset allocations into more sustainable asset classes, since 2015, the US oil and gas industry has filed more than 500 bankruptcies (Takahashi 2021).

GHG Protocol Corporate Standard

Various standards have been developed over the last 20 years to ensure comparability of carbon footprints, with ISO 14064 and the GHG Protocol Corporate Standard being the most used and accepted ones. As early as the 1990s, the World Resource Institute (WRI) and the World Business Council for Sustainable Development (WBCSD) identified the need to establish a GHG measurement and reporting standard. The first version was finally published in 2001, named the GHG Protocol Corporate Standard. It has become the most widely used standard for carbon reporting. Although it has its flaws, not including Scope 3, the framework showed some early success.

By 2016, 92% of Fortune 500 companies reporting to the Carbon Disclosure Project (CDP) had already been using the GHG Protocol as the basis for their reporting. 2021 was a record year. Despite the continuing challenges of the pandemic, more than 13,000 companies have reported on their environmental impact through CDP.

The carbon disclosure was 37% higher than in 2020 and 135% higher than when governments signed the Paris Agreement on climate change in 2015. In 2021, disclosing companies accounted for 96% of the Financial Times Stock Exchange Group (FTSE) 100, over 80% of the S&P 500, and more than 1,500 companies in China. In total, this accounted for over 64% of global market capitalization (CDP - Disclosure Insight Action 2021). A public declaration on ESG ambition and emissions reporting are important levers to accelerate companies toward greater sustainability.

The GHG Protocol defines how to count carbon and defines the so-called outlining of what you can trust. The GHG Protocol is composed of three different scopes of emissions, which are illustrated in Figure 1.11:

Figure 1.11 – The three scopes of GHG emissions (World Resource Institute n.d.)

Figure 1.11 – The three scopes of GHG emissions (World Resource Institute n.d.)

Scope 1 includes your direct emissions from owned and controlled sources such as facilities, equipment, mobile assets such as vehicles, and onsite landfills.

Scope 2 includes indirect emissions that other companies have generated to supply the reporting company with energy, such as electricity, heating, and cooling.

Scope 3 focuses on indirect emissions along the entire value chain of a company. It goes far beyond the emissions recorded in scopes 1 and 2. It accounts for both your upstream and downstream emissions across your entire value chain. They occur outside the organization, for example, in the supply chain or during production or travel. Scope 3 emissions are, on average, 11.4 times higher than a company’s operational emissions (scope 1 and scope 2); therefore, there is a need to create transparency around these emissions. Companies will fall short in their ambitions to reach net zero unless they also take a severe claim to reduce their Scope 3 emissions. On March 21, 2022, the United States’ Securities and Exchange Commission (SEC) proposed rules to enhance and standardize climate-related disclosures in their registration statements and periodic reports, which would enable investors to assess their risk exposure when making their investment decisions (SEC 2022).

Scope 4 focuses on avoided emission reduction that can be achieved through utilizing a particular product or service. Products and services that can have a significant avoided-emissions effect are employee commuting, teleconferencing, energy footprint reduction, and waste management. In Chapter 4, Data Center and Cloud, we will look at a case study from EcoDataCenter where they achieve net-positive results by feeding back excess heat and water to a combined heating and cooling water plant, which, in turn, avoids burning coal and gas for the district heating of private houses and industrial production. Scope 4 is not currently established in standard GHG reporting, but it has been a topic for discussion since 2013 when the scope 4 taxonomy was originally introduced. With the pandemic and working from home becoming the new normal, discussions have reignited that scope 4 for GHG emissions has become a necessity (Bay 2020). Figure 1.12 highlights more clearly what falls into the respective classification bucket. In the coming chapter, we will also define a sustainable IT taxonomy and what items fall into the respective category:

Figure 1.12 – Carbon emission scope classification

Figure 1.12 – Carbon emission scope classification

For most companies, including technology companies, the main drivers of carbon emissions lie primarily in Scope 3. Without accounting for Scope 3 emissions, calculating their carbon footprint would not give a complete picture:

Figure 1.13 – Scope emissions by industry

Figure 1.13 – Scope emissions by industry

A report by the German Global Compact Network (Global Compact Network Germany n.d.) , as shown in Figure 1.13, outlines the scope of emissions by industry. For carbon-intense sectors such as automotive and manufacturing, you can see that scope 3 emissions amount to 79%–87% of the total value chain emissions.

Since 2001, the GHG Protocol Corporate Standard has been used for numerous corporate reports. The GHG Protocol Corporate Standard defines the reporting requirements for scope 1 and scope 2 emissions and recommends including scope 3, although it is neither strictly required nor specifically defined. Since a considerable proportion of corporate emissions occur within scope 3, and since there was no uniform standard to compare companies, a new standard was introduced in 2011, called the GHG Protocol Scope 3 Standard. The Scope 3 standard introduced 15 categories within indirect scope 3 emissions for companies to report on.

Later in the book, we will return to the GHG protocols as we define our own sustainable IT emission taxonomy and start working out our own current state CO2 baseline.

Science-based targets

The primary objective of the SBTi Net-Zero Standard is to enable corporations to set net-zero targets consistent with limiting the global temperature rise to 1.5°C. These targets are aligned with proven methodologies within climate science, and it includes the guidance, criteria, and recommendations that companies need to set science-based targets.

The primary focus of COP26 was the critical target of limiting global temperatures to rise to 1.5°C by halving global emissions by 2030. Additionally, it was also where the Net-Zero Standard was officially launched. This key target is well within the critical requirements of SBTi’s Net-Zero Standard.

The Net-Zero Standard has four essential requirements:

  • Focus on rapid, deep emission cuts: Focusing on cutting carbon emissions is the most effective and scientifically sound way of limiting the global temperature rise to 1.5°C. Limiting global warming should be the overarching priority for companies embarking on the journey. The Net-Zero Standard covers the entire value chain emissions, including those products and services produced by their processes (scope 1), purchased electricity, heating, and cooling (scope 2), and generated by suppliers and end users (scope 3).
  • Set near- and long-term targets: Companies must set both near-term and long-term science-based targets. Companies must publicly commit themselves to halve emissions by 2030 and, by 2050, decarbonize completely.
  • No net-zero claims until long-term targets are met: A company can only be considered to have reached net zero if the long-term target has been fulfilled.
  • Go beyond the value chain: The SBTi recommends companies divulge deeper into their value chain and make investments outside their science-based targets to help mitigate and accelerate climate change elsewhere.

So, what is the impact and commitment on SBTis, you might ask? More than 2,000 companies worldwide lead the zero-carbon transition by setting emissions reduction targets (Companies taking action n.d.). About one-third of Europe’s largest public companies have pledged to reach net-zero by 2050. However, only 1 in 10 are on track to net zero (Ollagnier, Dijkstra and Matthew 2021). We also see a paradigm shift on the social side. Companies have been expanding diversity and inclusion efforts, committing funds to fight racial and social inequity, and speaking out on societal issues they used to avoid (Winston 2021). The war in Ukraine and the sanctions imposed on Russia alongside the EU’s high dependency on gas have sparked a major energy crisis in Europe. Countries with a high percentage of gas supplied by Russia such as Germany (40%), Italy (20%), and France (18%) have triggered countries scrambling for alternative energy sources (McCarthy 2014). On a positive note, this has also started to accelerate investments in renewable energy sources to reduce Russian gas dependency.

Publicly committing to the SBTi to reduce emissions sets a standard that echoes throughout the entire value chain (Mendiluce 2022). We see several prime examples where companies such as Microsoft and Salesforce have significantly improved their supplier code of conduct, forcing suppliers to act with the risk of being dropped or paying a fine for being incompliant. Another example is where Tesco and Santander bank have teamed up to offer Tesco’s suppliers preferential financing rates to invest in sustainable business practices, such as electrical vehicles (Winston 2021). With companies such as Microsoft and Zoom supplying videoconferencing software, you could argue that this would have a major impact on their scope 4 if they were allowed to account for it:

https://sciencebasedtargets.org/net-zero

Innovate or die

In business, as in life, change is inevitable. So far, in this chapter, we have discussed the environmental implications, but being a sustainable company also requires addressing critical social aspects such as social trends, labor, and politics. In the past, a company’s primary objective was to serve its shareholders, but that is rapidly changing to fulfill the needs of the employees, customers, partners and ecosystems, communities in which they operate, and social and climate issues.

The CEOs that keep their heads in the sand or deny climate change, as we’ve seen with a certain group of fossil-fuel companies and companies in some other industries, will increasingly be relegated to the graveyard of dinosaurs. – Paul Polman, former CEO of Unilever, and co-author of the book Net Positive: How Courageous Companies Thrive by Giving More Than They Take.

These CEOs are inevitably compelled to implement robust ESG programs. It is no longer optional. Expectations are running high from employees, customers, the capital market, and shareholders.

One of the best ways to examine this concept is by tracking the companies included in the S&P 500 Index. By taking a snapshot at any point in history, you can explore what industries and companies are rising and falling with the times. Primarily shaped by the digital revolution, the lifespan of large, successful companies on the S&P 500 has never been shorter. In 1969, a third of the S&P 500 index was composed of industrial companies. A half-century later, 68 firms are industrials. At the same time, IT companies have emerged, rapidly increasing from 16 to 68, and are now tied for the top sector spot (Finch 2019). According to the 2021 Corporate Longevity Forecast (Viguerie, Calder, and Hindo 2021) from growth strategy consulting firm Innosight, S&P 500 lifespans continue to decline, and fast-shaping “hybrid industries” create new risks and opportunities.

The report highlights some significant insights:

  • The average tenure on S&P 500 is rapidly decreasing. In 1965, the longevity was 33 years. In 1990, the lifespan had shrunk to 20 years. By 2026, it has been forecasted to shrink to just 14 years.
  • At its current pace, S&P 500 will replace 50% of the companies listed in the next 10 years.
  • Due to market evolution, since 2000, 52% of companies on the Fortune 500 have been acquired, ceased to exist, or gone bankrupt.

As highlighted in Figure 1.14, there has been a dramatic shift in the top 12 spots on the S&P 500 regarding market capitalization. Where General Electric held the top position in 2000, 15 years later, it had slipped to the middle of the pack, and by 2022, it had fallen entirely off the top 12 list. Currently, the market cap sits at $105.75 B, which is 4.5 times less than it was 22 years ago:

Figure 1.14 – Market cap development on S&P 500

Figure 1.14 – Market cap development on S&P 500

Apple, Microsoft, Alphabet/Google, Amazon, and Meta/Facebook stem from the technology sector and now inhibit the top 5 spots. Except for Microsoft, the other four companies were not even on the list in 2000. That is an earth-shattering sector rotation that has taken place in the past 22 years, primarily driven by the Fourth Industrial Revolution (4IR). Outside of the tech sector, companies such as Unilever, IKEA, Marks & Spencer, Reckitt, and Danone have taken a pole position in taking sustainable actions. In Chapter 9, Sustainability by IT, we will look at a case study from Decathlon where they have launched bikes as a subscription for kids with the ambition to transition into a circular economy model.

Besides General Electric, another great example of managing risk poorly is ExxonMobil, the world’s largest company in the United States. In 2000, the company was sitting comfortably in the number 2 spot with a market capitalization of $302 billion. As global oil prices peaked in 2007, the company’s market value topped $500 billion, making it the most valuable – and the most profitable – company in the world. However, when oil prices tanked and demand flatlined, ExxonMobil’s fortunes were about to run out. Whereas the S&P 500 index has increased 277% in the past decade, Exxon Mobil’s total return has dropped 20%, leaving it at $307 billion of the market capitalization, which is about the same as in 2000.

What is remarkable about ExxonMobil’s demise is that their research confirmed the role of fossil fuels in global warming decades ago: “There is a consensus throughout the science community that humankind is heavily impacting global climate from burning fossil fuels resulting in the release of carbon dioxide into the atmosphere. Potential catastrophic events have to be considered. Regions may turn into deserts, and heavier rainfall may hit other regions. Time is running out; we have a time window of 5 to 10 years to consider alternative energy strategies” (Banerjee, Song and Hasemyer 2015).

Although ExxonMobil’s top executives were warned already, in the 1970s, of possible catastrophe from the greenhouse effect by their chief scientist, James F. Black, the warning signs were blatantly ignored. Instead, they led efforts to block solutions. Due to a lack of company performance, activists’ shareholders are now calling for drastic measures to turn the oil and gas giant around with more sustainable and circular economy practices.

As we saw earlier, the digital revolution is a long-term trend that has reshaped the S&P 500. Many leading companies did not adapt to changing competitive landscapes throughout history or adopt new business models. Some of the companies that did not innovate, resulting in business failure, are Blockbuster, Polaroid, Toys R US, Pan Am, Borders, Pets[dot]com, Tower Records, Compaq, General Motors, and Kodak. Although the full impact of the COVID-19 global pandemic is not yet known, we will see it play out in front of our eyes in the next few years. Creative destruction is here to stay, and we will only see it accelerate in the coming years.

Transitioning to a circular economy

Another long-term trend is the transition to a circular economy, which is likely to move faster with an increasing move to digitization and automation than in previous transformations. As we read earlier in the chapter, we are already consuming 1.75% of Earth’s resources, and we are not regenerating nearly enough to live within the constraints of the planet. In our current way of living, finite raw materials are extracted or non-virgin plastics are used, the products are manufactured, products are shipped to a distribution point, the customer buys and uses the products once, and at the end of the product’s lifetime, it is discarded with limited reusability or recycling – the process is linear. In a circular economy, we move from a linear process to a circular one. We stop producing waste in the first place. Nature itself – the circle of life – inspires the circular economy concept. Species are born, grown, decline, and die. Our remains rot in the ground and are eventually regenerated, continuing the cycle.

We have reached a yearly global consumption rate of 100 billion tons of materials. Currently, the global economy is only 8.6% circular, leading to an extensive circularity gap. (Our world is now only 8.6% circular n.d.) Less than 10% of materials such as minerals, fossil fuels, metals, and biomass used in a year are refurbished, repurposed, or recycled. Out of the 100 billion tons, 91.4 % or 91.4 tons follow a linear model. It is abundantly clear that we cannot continue consuming these finite resources at this rate and dispose of them without any afterthought. We need to switch from linear to circular practices and turn theory into practice. You could argue that the transition to the circular economy has the potential to be a big game changer, but many aspects need to be right first: it requires robust ecosystems and infrastructures, and skills that can support the refurbishing, remanufacturing, and recycling processes. Legislation is needed that enforces a second life for products, new business models, and a mentality shift across the whole of society toward usage models and not consumption models.

Figure 1.15 illustrates the difference between the linear economy and the circular economy. In the linear economy, we continue to deplete Earth’s natural resources, and once they have reached their end of life, they end up in a toxic landfill somewhere instead of being recycled. In the circular economy, we take a minimal amount of finite resources and create a regenerative process flow that continues to live as long as possible:

Figure 1.15 – From a linear economy to a circular economy

Figure 1.15 – From a linear economy to a circular economy

All industries need to shift from a linear model to a circular model and become more regenerative in every aspect of their value chain. Concerns about climate change mean the transition to a circular economy is gathering pace (Jensen 2022). The Ellen Macarthur Foundation (What is circular economy? n.d.) has defined three principles driven by design. These principles are rapidly gaining traction and are often referenced as the circular economy’s core pillars.

These three circular economy principles are listed as follows:

  • Designing out waste and pollution
  • Keeping products and materials in use
  • Regenerating natural systems

In addition to these three principles, it also requires good biological and scientific skills to understand the basic chemical processes and use of materials, as well as careful designs for a second life. With increased societal pressure and strengthened political support, the circular economy will be a dominant force to be reckoned with in the next decade, as we transform from a linear model to a circular model (Jensen 2022). For example, the EU aims to transition to a circular economy to make Europe cleaner and more competitive (Circular economy action plan 2020). This new action plan announced initiatives along the entire life cycle of products. The primary target is for the resources being used to stay within the EU economy for as long as possible. The new action plan requires promoting circular economy processes, targeting how products are designed, encouraging sustainable consumption, and preventing waste.

My previous employer predicts that within a decade, in the 2030s, the circular economy will be the only economy (Johnson and Steutermann 2019). Switching from a linear to a circular economy requires our supply chains to use minimal virgin material and produce zero waste. Expectations from investors, customers, employees, and governing bodies are evident (Johnson and Steutermann 2019). In Chapter 9, Sustainability by IT, we will dig into many great circular economy examples where IT unlocks excellent opportunities for a more sustainable future.

For many companies, taking the initiative on climate boils down to risk. Failure to meet emission goals can bring unpleasant consequences from regulators, shareholders, employees, customers, and suppliers. As Larry Fink, CEO and Chairman of Blackrock, stated in his corporate letter to corporate CEOs and investors in his company: “The transition to a net-zero economy will change company’s business models at the core. There is not a single company that won’t be affected and if for those that don’t adapt will see their business endure and valuations diminish rapidly.” Companies need to start focusing on profits through purpose instead of profits aside from purpose. Those companies that fail to adapt and innovate are often doomed to failure.

The well-kept secret of the IT industry

On the surface, you might think that the usage of IT has a positive impact on the environment due to less business travel and commuting to work. Additionally, the use of videoconferencing tools from Microsoft and Zoom, leveraging supply chain management software from SAP and Oracle, leveraging digital twin technology for predicting asset failure, Adobe Sign, and DocuSign for eSignature, and countless other cloud solutions are available at your fingertips. The ICT industry contributes to a large percentage of overall energy consumption, CO2 emissions, and e-waste, but it is also part of the solution of enabling remote working, process efficiencies, and energy efficiencies. With roughly 53.6% or 4.4 billion of the global population now on the internet, the immense activity is stacking up alongside the massive e-waste from computers, tablets, and smartphones resulting in a whopping 57 million tons of e-waste generated globally each year (Why your internet habits are not as clean as you think 2020) (ISWA 2020). The benefits of the ICT industry are well known, but to date, its environmental impact has been kept a secret. But things are finally changing.

Today, we take access to the internet, surfing on the web, hanging out on social media, or spending downtime on our streaming platform of choice for granted. Most of us don’t think about the environmental consequences because we associate them with something tangible such as aviation, industry, transportation, or agriculture.

The global IT industry generates as much CO2 as the aviation industry. Both industries emit roughly 2% of each of the world’s global emissions. Emissions from within the IT sector come 50% from the manufacturing of IT equipment and the rest from energy expelled from equipment and data centers (Reuse and recycle: Google, Microsoft & Dell join forces to tackle e-waste crisis by 2030–2021).

According to Lawrence Berkeley National Laboratory, US data centers consume 73 billion kilowatt-hours (kWh) of energy yearly. US data center energy consumption is on par with 6 million homes or roughly 2% of annual US electricity use. With the increased use of digital services, there is a massive increase in worldwide energy consumption, and some researchers predict that it could rise to 8%–10% of the world’s energy consumption in the next decade.

The life cycle of ICT equipment also has a significant impact on sustainability-related areas such as e-waste and the use of natural resources and rare minerals. For example, servers used to run services and devices such as smartphones, tablets, and computers to consume services containing finite and toxic materials lead to massive heaps of e-waste and require an enormous amount of energy. Let us look at a couple of examples, such as a typical laptop and smartphone.

A laptop from Dell emits 341 kgCO2e ± 81 kgCO2e over an expected product lifetime of 4 years. Manufacturing represents 85.9% of total emissions, transportation is 3.3%, end-of-life processing is 0.2%, and usage is 10.6% (Dell Latitude 7420 2021). The yearly energy demand is 17.14 kWh, which also impacts the environment depending on whether it is powered by renewable energy or fossil fuels.

An Apple iPhone 12 smartphone emits 70 kgCO2e over an expected product lifetime of 3 years. This model uses 99% recycled tungsten and 98% recycled rare earth elements, which is a positive sign of keeping finite virgin resources to a minimum. Similarly to the Dell laptop, manufacturing represents 83% of total emissions, transportation is 2%, end-of-life processing is <1%, and usage is 14% (Apple 12 Product Environmental Report 2020).

The environmental impact of laptops and smartphones is not insignificant. Along with a docking station, 1–2 monitors, a keyboard, and a mouse, they are standard equipment for a knowledge worker worldwide. If you are a technology leader with thousands of employees, your organization’s environmental impact from IT adds up quickly. Annually, the world is generating 57 million metric tons of e-waste according to the Global E-Waste Monitor 2020 Report. Over the last 5 years, we have seen a 21% increase rate. Even more tragic is that 80% is improperly recycled in countries with no recycling facilities. Therefore, technology leaders need to start thinking about new ways to apply circular practices to processes so that it does not go into e-waste. In the coming chapters, we will look at more examples and use cases regarding how to address this ICT issue.

With exponential technologies on the rise, such as artificial intelligence, the metaverse, robotic process automation, and cryptocurrencies, the need for more computing power, storage, and energy will continue to surge.

Summary

What we do in the next 50 years will determine the next 10,000 years.

– Johan Rockström

As we reach the end of this chapter, if you were not already aware, you now have a better understanding of the great challenge humanity has in front of us to curb the climate crisis. As you learned earlier in the chapter, the environmental impact of technology is one of the most well-kept secrets of the IT industry. The environmental impact of IT is not insignificant. With the dramatic increase in IT in all sectors, projecting energy consumption will exceed the aviation industry by 4% or 5% by 2024 unless we find different ways to deliver IT more sustainably. That is why there is a step change needed toward sustainable IT practices. The purpose of this book is not to explain the intricacies of why we have a climate crisis, but what we can do as technology leaders to focus on the what and the how.

Naturally, every company’s starting point will be different. If you are a company operating in a traditional industry or an industry with many policies and regulations, you will most likely have infrastructure such as data centers in-house. In comparison, if you are a software technology start-up, you have most likely taken a cloud-first approach. Depending on the complexity of your IT landscape and the size of your data, you can have a massive impact on your GHG emissions. Depending on your company size and the size of your IT budget, IT procurement can be a very important lever to ensure adherence to a sustainable code of conduct, request for proposal (RFP), and master service agreement (MSA) requirements. Whether you have a strategy to buy commercial off-the-shelf (COTS) software or whether you develop in-house will determine how much you must focus on sustainable software development. Where you are located around the world, your access to renewable energy, and the consequences of direct effects of climate change such as flooding, fires, scarcity of resources, and drought can have direct consequences on production lines and the ability to deliver goods and services. As we learned earlier in the chapter, the environmental impact of ICT equipment has a sizable contribution to your own carbon emission and your value chain emission. Depending on how mature you are in managing the whole life cycle of your equipment, this can have a big impact on your overall IT emissions.

The Chinese word for crisis consists of two symbols. One symbol means danger, and the other symbol means opportunity. Just as technological innovation has led us into this crisis, it can also accelerate recovery – exponential technologies – across power, mobility, and industry. IT can give rise to solving a global problem for all humanity. A recent strategy paper for a circular economy on network equipment by GSM Association (GSMA), which is published under Mobile World Conference (MWC) 2022, suggests an excellent opportunity to decarbonize four major sectors, energy, manufacturing, transportation, and buildings, by up to 40% by enabling mobile connectivity in the next decade. However, the report also recognizes that the ICT sector also has a massive impact on the environment.

With the acceleration of 4IR, increased hyperconnectivity, and the ICT sector growing tremendously, it is crucial to rapidly decarbonize and transition from a linear economy to a circular economy.

Solving the climate crisis can seem complicated to grasp and also seem like an overwhelming task. It requires a collective effort from individuals, corporations, organizations, and policymakers. To relate to what needs to get done, I tend to fall back on the definition of “top three for humanity” (Rockström and Klum 2012), as outlined by Johan Rockström and Mattias Klum in their book The Human Quest: Prospering Within Planetary Boundaries.

The top-three-for-humanity definitions outline what we need to transition to:

  • 100% climate-neutral energy and transportation
  • Healthy and sustainable food for all
  • A circular economy

Most of the work needed in the next decade might feel like a daunting and impossible task. As a technology leader, I want to be part of the solution to solve the most significant challenge that humankind has ever encountered. I firmly believe that IT can play an essential role in transitioning to a sustainable future. We have seen how digital disruption has reshaped the S&P 500 in the past 22 years.

As Greta Thunberg, who was a 16-year-old at the time, proclaimed in her speech at the World Economic Forum in Davos, Switzerland, in January 2019, calling on the world to act as you would in a crisis. I want you to act as if your house is on fire. Because it is.

We need to act quickly and decisively. As John Doerr proclaimed in his book of the same name, we need to act “with speed and at scale.” Although a daunting task, you should also embrace this as a fantastic opportunity to use your operating environment to be part of something bigger, to make a long-lasting change that benefits everyone on this Earth. This book will help you unlock opportunities toward achieving climate goals by delivering sustainable IT practices of proven methods, use cases, and examples. This book will enable you to lead and accelerate the journey toward planetary stewardship to curb the climate crisis.

The fact that you are also holding and reading this book shows that you have an invested interest in making a long-lasting change beyond your company or organization’s operating environment to create a future for a sustainable way of living and working within the constraints of planet Earth.

In the next chapter, we will go deeper into the concept of sustainable IT. What are the main drivers and critical considerations for a sustainable IT plan, and the importance of embedding sustainable IT into the overall corporate sustainability agenda?

Further resources

  • Intergovernmental Panel on Climate Change (IPCC): https://www.ipcc.ch/
  • United Nations – Sustainable Development Goals (SDG): https://sdgs.un.org/goals
  • Polman, P and Winston, A. (2021) Net Positive: How Courageous Companies Thrive by Giving More Than They Take, Harvard Business Review Press
  • Gates, B. (2021) How to Avoid a Climate Disaster, Allen Lane
  • Doerr, J. (2021) Speed & Scale, Penguin Random House UK

Bibliography

Left arrow icon Right arrow icon

Key benefits

  • Execute a sustainable IT strategy with proven methods and real-world use cases
  • Progress as a sustainable IT advocate and set yourself apart from other senior IT leaders
  • Increase your chances of receiving executive buy-in on your sustainable IT strategy

Description

We are at a critical point in human history. Humanity is under threat, but all is not lost. We can take action! But how? Sustainable IT Playbook for Technology Leaders will show you how. It will walk you through the construction and implementation of a sustainable IT strategy and enable you to do your bit for the future of mankind. The book is split into three parts. Part I details the “why” and the clear and present danger that humanity faces today: the climate crisis. How did we get here, what are the immediate threats, what are the planetary boundaries that we need to peel back to safe levels, and what impact does IT have on society at large? Part II will focus on the "what.” It examines the nitty-gritty details of what we can do to unlock significant returns on sustainable investments toward a more sustainable future. Part III, the final part of the book, focuses on the “how.” How do you turn your ideas into action? What do you need to do to establish your baseline and your direction of travel towards your objective? This part provides tangible case studies and explains how you can start your journey today to begin delivering global and impactful objectives. By the end of this book, you’ll be able to plan, implement, and communicate a sustainable IT strategy and set yourself apart as a progressive technology leader.

Who is this book for?

This book is for executive IT leaders such as CIOs, CDOs, and CTOs dedicated to influencing, inspiring, and engaging businesses, organizations, and individuals to reduce their carbon footprint through sustainable IT practices.

What you will learn

  • Discover why IT is a major contributor to carbon emissions
  • Explore the principles and key methods of sustainable IT practices
  • Build a robust, sustainable IT strategy based on proven methods
  • Optimize and rationalize your code to consume fewer resources
  • Understand your energy consumption patterns
  • Apply a circular approach to the IT hardware life cycle
  • Establish your sustainable IT baseline
  • Inspire and engage employees, customers, and stakeholders
Estimated delivery fee Deliver to Philippines

Standard delivery 10 - 13 business days

₱492.95

Premium delivery 5 - 8 business days

₱2548.95
(Includes tracking information)

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Oct 14, 2022
Length: 418 pages
Edition : 1st
Language : English
ISBN-13 : 9781803230344
Concepts :

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
Estimated delivery fee Deliver to Philippines

Standard delivery 10 - 13 business days

₱492.95

Premium delivery 5 - 8 business days

₱2548.95
(Includes tracking information)

Product Details

Publication date : Oct 14, 2022
Length: 418 pages
Edition : 1st
Language : English
ISBN-13 : 9781803230344
Concepts :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just ₱260 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just ₱260 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 9,951.97
Technical Program Manager's Handbook
₱2296.99
Solutions Architect's Handbook
₱4592.99
Sustainable IT Playbook for Technology Leaders
₱3061.99
Total 9,951.97 Stars icon

Table of Contents

17 Chapters
Part 1: Why Is Sustainable IT Important? Chevron down icon Chevron up icon
Chapter 1: Our Most Significant Challenge Ahead Chevron down icon Chevron up icon
Chapter 2: Rise of Sustainable IT Chevron down icon Chevron up icon
Part 2: What Are Sustainable IT Practices? Chevron down icon Chevron up icon
Chapter 3: The Fundamental Building Blocks of a Sustainable IT Practice Chevron down icon Chevron up icon
Chapter 4: Data Center and Cloud Chevron down icon Chevron up icon
Chapter 5: Application and Data Chevron down icon Chevron up icon
Chapter 6: IT Hardware Management Chevron down icon Chevron up icon
Chapter 7: Energy Resource Management Chevron down icon Chevron up icon
Chapter 8: Leveraging Your Buying Power Chevron down icon Chevron up icon
Chapter 9: Sustainability by IT Chevron down icon Chevron up icon
Part 3: How Do You Accelerate Sustainable IT? Chevron down icon Chevron up icon
Chapter 10: Get Started Today Chevron down icon Chevron up icon
Chapter 11: Putting a Sustainable IT Strategy in Place Chevron down icon Chevron up icon
Chapter 12: From Strategy to Execution – Lead with Purpose and Deliver Progress Quickly Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.8
(26 Ratings)
5 star 92.3%
4 star 0%
3 star 3.8%
2 star 0%
1 star 3.8%
Filter icon Filter
Top Reviews

Filter reviews by




dieElla Oct 27, 2022
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Wow - I am deeply impressed by Niklas Sundberg's Sustainable IT Playbook for Technology Leaders, which was recently published. I am enormously interested in IT-Sustainability due to my IT consulting role and perspective. I am also trying to help my clients access and understand ways to guide IT into a sustainable future.From my point of view, this is one of the few, if not one of the first great books that brilliantly combines a view on sustainability and IT. A must read even for people who are not technology leaders!Thank you Niklas Sundberg for presenting the topic in a digestible way and sharing your views!I highly recommend the book for everyone who is interested in new impulses regarding IT-Sustainability and don't know where to start as well as to all practicioners!Writing style is very comprehensible and the book can be used like a reference book in daily business!Chapeau!
Amazon Verified review Amazon
Dave Best Jan 10, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I'd been hearing the headscratching conversations happening for several years now among IT leaders:- "We know we need to start thinking about sustainable IT as a means to execute and effectively measure our Carbon neutrality goals. Our Board is starting to ask about it."- "Our CEO has committed to achieving sustainability by 2030 but I have no idea what it means for IT as one of the largest functional consumers of energy in our company."- "I want to do my part to leave the planet in a better place, but what do I do and where do I start?"With this book, Author Niklas Sundberg has given an amazing tool to his peers and the IT leadership community. Niklas blends his superpowers as both a Global CIO (Assa Abloy) and a former Gartner research director in applying practical tools and templates for CIOs and their teams moving forward on their journey while also providing the larger picture framework and aligning to the "WHY" - which will prove useful for strengthening conversations at the CEO and Board level.The icing on this SustainableIT cake is the inspiration or desperation we all need to come to the determination that IT IS TIME TO TAKE A STAND for sustainability. There is no better function than IT to drive transformation, innovation and modernization across the organization and to enable the measurement and transparent reporting of outcomes.Kudos to Niklas and I will be sharing this book far and wide to my business network.
Amazon Verified review Amazon
Matthias Büchner Dec 07, 2022
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I sincerely enjoyed reading this book. It covers many aspects of the complex topic of sustainable IT: legal, cultural, organizational, technical, strategy.The book is packed with useful references, examples and quotes from other industry leaders.It is a must-read for all IT leaders.
Amazon Verified review Amazon
SAPTARSHI ROUTH Jan 16, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This is a brilliant book bringing together a overarching strategy framework as well as practical knowhow that’s needed for every technology leader, driving the sustainability agenda, with the tech functions and across the enterprise.An absolute must piece of thought leadership on one of the most pressing issues of today.
Amazon Verified review Amazon
paprock Nov 29, 2022
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book is important. Until now, the ICT is still not considered widely as part of the climate crisis. This needs to change, and I'm glad that Niklas wrote this formidable book about it.Even though it is mostly to the point and contains no unnecessary information, it is still almost 400 pages strong. Each chapter has a good number of references to other literature, so you can dive deeper into certain topics if you like.It also contains many interesting illustrations, which are - and this is actually my only tiny point of criticism - sometimes hard to read.If you want to help to transform the ICT into a sustainable industry, please read this book. And if you don't, you should read it, nevertheless, because our industry will (have to) change soon, and you surely don't want your company to fall behind.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact customercare@packt.com with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at customercare@packt.com using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on customercare@packt.com with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on customercare@packt.com within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on customercare@packt.com who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on customercare@packt.com within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela