Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Statistics for Data Science

You're reading from   Statistics for Data Science Leverage the power of statistics for Data Analysis, Classification, Regression, Machine Learning, and Neural Networks

Arrow left icon
Product type Paperback
Published in Nov 2017
Publisher Packt
ISBN-13 9781788290678
Length 286 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
James D. Miller James D. Miller
Author Profile Icon James D. Miller
James D. Miller
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Transitioning from Data Developer to Data Scientist FREE CHAPTER 2. Declaring the Objectives 3. A Developer's Approach to Data Cleaning 4. Data Mining and the Database Developer 5. Statistical Analysis for the Database Developer 6. Database Progression to Database Regression 7. Regularization for Database Improvement 8. Database Development and Assessment 9. Databases and Neural Networks 10. Boosting your Database 11. Database Classification using Support Vector Machines 12. Database Structures and Machine Learning

Using R to illustrate boosting methods


In order to further illustrate the use of boosting, we should have an example.

In this section, we'll take a high-level look at a thought-provoking prediction problem drawn from Mastering Predictive Analytics with R, Second Edition, James D. Miller and Rui Miguel Forte, August 2017 (https://www.packtpub.com/big-data-and-business-intelligence/mastering-predictive-analytics-r-second-edition).

In this original example, patterns made by radiation on a telescope camera are analyzed in an attempt to predict whether a certain pattern came from gamma rays leaking into the atmosphere or from regular background radiation.

Gamma rays leave distinctive elliptical patterns and so we can create a set of features to describe these. The dataset used is the MAGIC Gamma Telescope Data Set, hosted by the UCI Machine Learning Repository at http://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope.

This data consists of 19,020 observations, holding the following list of...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image