Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
R Machine Learning Projects

You're reading from   R Machine Learning Projects Implement supervised, unsupervised, and reinforcement learning techniques using R 3.5

Arrow left icon
Product type Paperback
Published in Jan 2019
Publisher Packt
ISBN-13 9781789807943
Length 334 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Dr. Sunil Kumar Chinnamgari Dr. Sunil Kumar Chinnamgari
Author Profile Icon Dr. Sunil Kumar Chinnamgari
Dr. Sunil Kumar Chinnamgari
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Exploring the Machine Learning Landscape FREE CHAPTER 2. Predicting Employee Attrition Using Ensemble Models 3. Implementing a Jokes Recommendation Engine 4. Sentiment Analysis of Amazon Reviews with NLP 5. Customer Segmentation Using Wholesale Data 6. Image Recognition Using Deep Neural Networks 7. Credit Card Fraud Detection Using Autoencoders 8. Automatic Prose Generation with Recurrent Neural Networks 9. Winning the Casino Slot Machines with Reinforcement Learning 10. The Road Ahead
11. Other Books You May Enjoy

Building a text sentiment classifier with the BoW approach

The intent of the BoW approach is to convert the review text provided into a matrix form. It represents documents as a set of distinct words by ignoring the order and meaning of the words. Each row of the matrix represents each review (otherwise called a document in NLP), and the columns represent the universal set of words present in all the reviews. For each document, and across each word, the existence of the word, or the frequency of the word occurrence, in that specific document is recorded. Finally, the matrix created from word frequency vectors represents the documents set. This methodology is used to create input datasets that are required to train the models, and also to prepare the test dataset that need to be used by the trained models to perform text classification. Now that we understand the BoW motivation...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image