Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
PySpark Cookbook

You're reading from   PySpark Cookbook Over 60 recipes for implementing big data processing and analytics using Apache Spark and Python

Arrow left icon
Product type Paperback
Published in Jun 2018
Publisher Packt
ISBN-13 9781788835367
Length 330 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (2):
Arrow left icon
Tomasz Drabas Tomasz Drabas
Author Profile Icon Tomasz Drabas
Tomasz Drabas
Denny Lee Denny Lee
Author Profile Icon Denny Lee
Denny Lee
Arrow right icon
View More author details
Toc

Table of Contents (9) Chapters Close

Preface 1. Installing and Configuring Spark FREE CHAPTER 2. Abstracting Data with RDDs 3. Abstracting Data with DataFrames 4. Preparing Data for Modeling 5. Machine Learning with MLlib 6. Machine Learning with the ML Module 7. Structured Streaming with PySpark 8. GraphFrames – Graph Theory with PySpark

Introducing Estimators


The Estimator class, just like the Transformer class, was introduced in Spark 1.3. The Estimators, as the name suggests, estimate the parameters of a model or, in other words, fit the models to data.

In this recipe, we will introduce two models: the linear SVM acting as a classification model, and a linear regression model predicting the forest elevation.

Here is a list of all of the Estimators, or machine learning models, available in the ML module:

  • Classification:
    • LinearSVC is an SVM model for linearly separable problems. The SVM's kernel has the 

       form (a hyperplane), where 

       is the coefficients (or a normal vector to the hyperplane), 

       is the records, and b is the offset.

    • LogisticRegressionis a default, go-to classification model for linearly separable problems. It uses a logit function to calculate the probability of a record being a member of a particular class.

    • DecisionTreeClassifier is a decision tree-based model used for classification purposes. It builds a binary...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image