Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
.NET Design Patterns

You're reading from   .NET Design Patterns Learn to Apply Patterns in daily development tasks under .NET Platform to take your productivity to new heights.

Arrow left icon
Product type Paperback
Published in Jan 2017
Publisher Packt
ISBN-13 9781786466150
Length 314 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Praseed Pai Praseed Pai
Author Profile Icon Praseed Pai
Praseed Pai
Shine Xavier Shine Xavier
Author Profile Icon Shine Xavier
Shine Xavier
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. An Introduction to Patterns and Pattern Catalogs FREE CHAPTER 2. Why We Need Design Patterns? 3. A Logging Library 4. Targeting Multiple Databases 5. Producing Tabular Reports 6. Plotting Mathematical Expressions 7. Patterns in the .NET Base Class Library 8. Concurrent and Parallel Programming under .NET 9. Functional Programming Techniques for Better State Management 10. Pattern Implementation Using Object/Functional Programming 11. What is Reactive Programming? 12. Reactive Programming Using .NET Rx Extensions 13. Reactive Programming Using RxJS 14. A Road Ahead

Recursion


Recursions are no alien feature to any programmer worth his salt. Recursions are leveraged in functional programming to accomplish iteration/looping. Recursive functions invoke themselves, performing an operation repeatedly till the base case is reached. Tail call-based recursions are a common phenomenon. Recursion typically involves adding stack frames to the call stack, thus growing the stack. You can run out of stack space during deep recursions. The compiler does its own share of optimizations (predominantly tail call optimization/elimination) to conserve stack space and improve throughput. But the functional world (with its first-class and higher-order functions) gives us more flexibility to wire such optimizations in our recursive functions. Let's see how this is achieved with the following factorial example:

    //Regular Recursion 
 
    Func<int, int> factorial = (n) => 
    { 
      Func<int, int> fIterator = null; //Work-around for ...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime