Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
MATLAB for Machine Learning

You're reading from   MATLAB for Machine Learning Practical examples of regression, clustering and neural networks

Arrow left icon
Product type Paperback
Published in Aug 2017
Publisher Packt
ISBN-13 9781788398435
Length 382 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Pavan Kumar Kolluru Pavan Kumar Kolluru
Author Profile Icon Pavan Kumar Kolluru
Pavan Kumar Kolluru
Giuseppe Ciaburro Giuseppe Ciaburro
Author Profile Icon Giuseppe Ciaburro
Giuseppe Ciaburro
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Getting Started with MATLAB Machine Learning FREE CHAPTER 2. Importing and Organizing Data in MATLAB 3. From Data to Knowledge Discovery 4. Finding Relationships between Variables - Regression Techniques 5. Pattern Recognition through Classification Algorithms 6. Identifying Groups of Data Using Clustering Methods 7. Simulation of Human Thinking - Artificial Neural Networks 8. Improving the Performance of the Machine Learning Model - Dimensionality Reduction 9. Machine Learning in Practice

Summary

In this chapter, we began exploring the different types of variables: quantitative (interval and ratio) and qualitative variables (nominal, dichotomous, and ordinal). Then, we started the hard work of data preparation; we saw how to find missing values, change the datatype, replace missing values, remove missing entries, order the table, find outliers, and finally, organize multiple sources of data into one.

Next, we discovered the exploratory statistics techniques used to derive features that can guide us in choosing the right tools to extract knowledge from data. We took a look at measures of location such as mean, median, mode, quantiles, and percentiles; measures of dispersion such as range, interquartile range, variance, standard deviation, correlation, and covariance; and measures of shape such as skewness and kurtosis.

Finally, we discussed exploratory visualization...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime