In this chapter, we looked at using probabilistic linear models to predict a qualitative response with two generalized linear model methods: logistic regression, and multivariate adaptive regression splines. We explored using the weight of information and information value as a technique to do univariate feature selection. We covered the concept of finding the proper probability threshold to minimize classification error. Additionally, we began the process of using various performance metrics such as AUC, log-loss, and ROC charts to explore model selection visually and statistically. These metrics proved to be more informative than just pure accuracy, especially in a situation where class labels are highly imbalanced. In the next chapter, we'll cover regularization methods for feature selection, and how it can be used in training your algorithms. We'll see how...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine