Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Java Machine Learning

You're reading from   Mastering Java Machine Learning A Java developer's guide to implementing machine learning and big data architectures

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781785880513
Length 556 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (2):
Arrow left icon
Uday Kamath Uday Kamath
Author Profile Icon Uday Kamath
Uday Kamath
Krishna Choppella Krishna Choppella
Author Profile Icon Krishna Choppella
Krishna Choppella
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Machine Learning Review FREE CHAPTER 2. Practical Approach to Real-World Supervised Learning 3. Unsupervised Machine Learning Techniques 4. Semi-Supervised and Active Learning 5. Real-Time Stream Machine Learning 6. Probabilistic Graph Modeling 7. Deep Learning 8. Text Mining and Natural Language Processing 9. Big Data Machine Learning – The Final Frontier A. Linear Algebra B. Probability Index

Model assessment, evaluation, and comparisons

The key ideas discussed here are:

  • How to assess or estimate the performance of the classifier on unseen datasets that it will be predicting on future unseen datasets.
  • What are the metrics that we should use to assess the performance of the model?
  • How do we compare algorithms if we have to choose between them?

Model assessment

In order to train the model(s), tune the model parameters, select the models, and finally estimate the predictive behavior of models on unseen data, we need many datasets. We cannot train the model on one set of data and estimate its behavior on the same set of data, as it will have a clear optimistic bias and estimations will be unlikely to match the behavior in the unseen data. So at a minimum, there is a need to partition data available into training sets and testing sets. Also, we need to tune the parameters of the model and test the effect of the tuning on a separate dataset before we perform testing on the test set. The...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime